Home
Class 11
MATHS
The principal value of arg (z), where z=...

The principal value of `arg (z)`, where `z=1+cos((8pi)/5)+i sin((8pi)/5)` (where, `i=sqrt-1) ` is given by

Promotional Banner

Similar Questions

Explore conceptually related problems

z=(1-i)/(cos(pi/3)+i sin(pi/3))

If z=1+cos((pi)/(5))+i sin((pi)/(5)) then sin(argz) is equal to

The principal value of the arg(z) and lzl of the complex number z=1+cos((11 pi)/(9))+i sin((11 pi)/(9)) are respectively

If z=sqrt(3)-2+i, then principal value of argument z is (where i=sqrt(-1)-(5 pi)/(12)(2)(pi)/(12) (3) (7 pi)/(12) (4) (5 pi)/(12)

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)

Principal argument of z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7)) is

For a complex number z, if arg(z) in (-pi, pi], then arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5)) is (here i^(2)-1 )

For a complex number z, if arg(z) in (-pi, pi], then arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5)) is (here i^(2)-1 )