Home
Class 9
MATHS
2 5^(x-1)=5^(2x-1)-100 ,...

`2 5^(x-1)=5^(2x-1)-100 ,`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 25^(x-1)=5^(2x-1)-100 , then find the value of x .

If 25^(x-1)=5^(2x-1)-100 , then find the value of x .

25 ^ (x-1) = 5 ^ (2x-1) -100

Vertices of a variable triangle are (3,4); (5costheta, 5sintheta) and (5sintheta,-5costheta) where theta is a parameter then the locus of its orthocentre is a. (x+y-1)^2+(x-y-7)^2=100 b. (x+y-7)^2+(x-y-1)^2=100 c. (x+y-7)^2+(x+y-1)^2=100 d. (x+y-7)^2+(x-y+1)^2=100

Solve 5^(x+1)+5^(2-x)=5^3+1

(2x+5)/((x-1)(x-2))=

Solve 5^(x+1)+5^(2-x)=5^(3)+1

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given