Home
Class 11
MATHS
(log2(x-1))^2-log(0. 5)(x-1)>2...

`(log_2(x-1))^2-log_(0. 5)(x-1)>2`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)(x+1)-log_(2)(3x-1)=2

(log_(2)x)^(2)+4(log_(2)x)-1=0

If log_(0,2)(x-1)>log_(0.04)(x+5) then

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is

If y = 5^(2(log_(5)(x+1)-log_(5)(3x+1)) then (dy)/(dx) at x = 0 is

If x, where 0,1,2 are respectively the values of x satisfying the equation ((log_(5)x))^(2)+(log_(5x)((5)/(x))), then

If log_(0.2)(x-1)gtlog_(0.04)(x+5) then

Sum of integers satisfying sqrt(log_(2)x-1)-(1)/(2)log_(2)(x^(3))+2>0 is

Solve: log_(x+(1)/(x))(log_(2)(x-1)/(x+2))>0

Solve the following inequalities (i) log_(5)(3x-1) lt 1 (ii) (log_(.5)x)^(2)+log_(.5)x-2 le 0 (iii) log_(3)(x+1)+log_(3)(x+7) ge 3 (iv)log_(1//2)log_(3)(x^(2)+5)+1 le 0