Home
Class 12
CHEMISTRY
Given the standard enthalpies at 298K in...

Given the standard enthalpies at 298K in kJ `//` mol for the following two reactions
`Fe_(2) O_(3) ( s) + ( 3)/( 2) C ( s) rarr ( 3)/( 2) CO_(2) ( g) + 2Fe ` `Delta H = +234` .....(1)
`C ( s) + O_(2)(g) rarr CO_(2)(g)` `Delta H = - 393 ` ....(2)
The value of `Delta H ` for `4Fe(s) + 3O_(2)(g) rarr 2Fe_(2)O_(3) ( s)` is

A

`( 3)/(2) ( - 393) + 2 xx 234`

B

`( 3)/(2) ( - 393) + 234`

C

`3 ( -393) + 2 xx 234`

D

`3( - 393) - 2 ( 234)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard enthalpy change (ΔH) for the reaction: \[ 4 \text{Fe}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{Fe}_2\text{O}_3(s) \] we will use the given reactions and their enthalpy changes. ### Step 1: Write down the given reactions and their ΔH values. 1. **Reaction 1**: \[ \text{Fe}_2\text{O}_3(s) + \frac{3}{2} \text{C}(s) \rightarrow \frac{3}{2} \text{CO}_2(g) + 2 \text{Fe} \] \[ \Delta H = +234 \text{ kJ} \] 2. **Reaction 2**: \[ \text{C}(s) + \text{O}_2(g) \rightarrow \text{CO}_2(g) \] \[ \Delta H = -393 \text{ kJ} \] ### Step 2: Manipulate Reaction 1 to match the target reaction. We need to have 4 Fe on the reactant side, so we will multiply Reaction 1 by 2: \[ 2 \text{Fe}_2\text{O}_3(s) + 3 \text{C}(s) \rightarrow 3 \text{CO}_2(g) + 4 \text{Fe} \] Now, the ΔH for this modified reaction will be: \[ \Delta H = 2 \times 234 = +468 \text{ kJ} \] ### Step 3: Reverse Reaction 1. To find the enthalpy change for the formation of Fe2O3, we need to reverse the modified Reaction 1: \[ 4 \text{Fe} + 3 \text{CO}_2(g) \rightarrow 2 \text{Fe}_2\text{O}_3(s) \] When we reverse a reaction, the sign of ΔH also changes: \[ \Delta H = -468 \text{ kJ} \] ### Step 4: Use Reaction 2. Now we need to use Reaction 2 to get the required O2. We need 3 O2, so we will multiply Reaction 2 by 3: \[ 3 \text{C}(s) + 3 \text{O}_2(g) \rightarrow 3 \text{CO}_2(g) \] The ΔH for this reaction will be: \[ \Delta H = 3 \times (-393) = -1179 \text{ kJ} \] ### Step 5: Combine the reactions. Now we can add the two reactions: 1. \( 4 \text{Fe} + 3 \text{CO}_2(g) \rightarrow 2 \text{Fe}_2\text{O}_3(s) \) (ΔH = -468 kJ) 2. \( 3 \text{C}(s) + 3 \text{O}_2(g) \rightarrow 3 \text{CO}_2(g) \) (ΔH = -1179 kJ) When we add these two reactions, the \(3 \text{CO}_2(g)\) cancels out: \[ 4 \text{Fe} + 3 \text{O}_2(g) \rightarrow 2 \text{Fe}_2\text{O}_3(s) \] ### Step 6: Calculate the total ΔH. Now, we can calculate the total ΔH: \[ \Delta H = -468 \text{ kJ} + (-1179 \text{ kJ}) = -1647 \text{ kJ} \] ### Conclusion The value of ΔH for the reaction \( 4 \text{Fe}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{Fe}_2\text{O}_3(s) \) is: \[ \Delta H = -1647 \text{ kJ} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Given the standard enthalpies at 298 k in kj/mol for the following two reactions Fe_2O_(3(s))+3/2C_(s) hArr 3/2CO_(2(g))+2Fe DeltaH=+234 …………(1) C_(s)+O_(2(g)) hArr CO_(2(g)) DeltaH=-393 the value of DeltaH for 4Fe_((s))+3O_(2(g))hArr 2Fe_2O_3 is

Fe_(2)O_(2)(s)+(3)/(2)C(s)to(3)/(2)CO_(2)(g)+2Fe(s) DeltaH^(@)=+234.12KJ C(s)+O_(2)(g)toCO_(2)(g) DeltaH^(@)=-393.5KJ Use these equations and DeltaH^(@) value to calculate DeltaH^(@) for this reaction : 4Fe(s)+3O_(2)(g)to2Fe_(2)O_(3)(s)

Calculate in kJ for the following reaction : C(g) + O_(2)(g) rarr CO_(2)(g) Given that, H_(2)O(g) + C(g) + H_(2)(g) , Delta H = +131 kJ CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " " Delta H = -242 kJ H_(2)(g) + 1/2 O_(2)(g) rarr H_(2)O(g), " "DeltaH = -242 kJ

Diborane is a potential rocket fuel which undergoes combustion according to the reaction, B_(2)H_(6) (g) + 3O_(2) (g) rarr B_(2) O_(3) (s) + 3H_(2) O (g) From the following data, calculate the enthalpy change for the combustion of diborane: (i) 2 B (s) + ((3)/(2)) O_(2) (g) rarr B_(2) O_(3) (s) , Delta H = 0 1273 k J//mol (ii) H_(2) (g) + ((1)/(2)) O_(2) (g) rarr H_(2) O (l), Delta H = -286 kJ//mol (iii) H_(2) O (l) rarr H_(2)O (g) Delta H = 44 kJ//mol (iv) 2B (s) + 3H_(2) (G) rarr B_(2) H_(6) (g), Delta H = 36 kJ//mol