Home
Class 7
MATHS
let f(x)=x^3-x^2-3x-1 , g(x)=(x+1)aand h...

let `f(x)=x^3-x^2-3x-1 , g(x)=(x+1)a`and `h(x)=f(x)/g(x)` where `h` is a rational function such that `(1)` it is continuous everywhere except when `x=-1 ,(2) lim_(x->oo)h(x)=oo ` and `(3) lim_(x->-1)h(x)=1/2` then the value of `h(1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)-x^(2)-3x-1, g(x)=(x+1)a and h(x)=(f(x))/(g(x)) where h is a rational function such that (i) It is continuous everywhere except when x=-1 , (ii) lim_(xrarr -1)h(x)=(1)/(2) . The value of h(1) is

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

If f(x)=(g(x))+(g(-x))/2+2/([h(x)+h(-x)]^(-1)) where g and h are differentiable functions then f'(0)

Let f(x)=(1)/(1-x),g(x)= fofofofofofof (x) and h(x)=tan^(-1)(g(-x^(2)-x)) then find lim_(x rarr oo)sum h(r)

Let f(x)=(x^(5)-1)(x^(3)+1),g(x)=(x^(2)-1)(x^(2)-x+1) and let h(x) be such that f(x)=g(x)h(x) . Then lim_(xto1)h(x) is

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is