Similar Questions
Explore conceptually related problems
Recommended Questions
- prove the following int e^(g(x)){f(x)*g'(x)+f'(x)}dx=e^(g(x))f(x)+c
Text Solution
|
- Evaluate: ifintg(x)dx=g(x),t h e nintg(x){f(x)+f^(prime)(x)}dx
Text Solution
|
- prove the following int e^(g(x)){f(x)*g'(x)+f'(x)}dx=e^(g(x))f(x)+c
Text Solution
|
- if intg(x)dx = g(x), then intg(x){f(x) + f'(x)}dx is equal to
Text Solution
|
- int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx
Text Solution
|
- If f(x)=log(e)x and g(x)=e^(x), then prove that : f(g(x)}=g{f(x)}
Text Solution
|
- यदि f(x) = "log"(e)x और g(x) = e^(x), तो दिखाइए की f{g(x)} =g{f(x)}
Text Solution
|
- If inte^(2x)f'(x)dx=g(x), then int[e^(2x)f(x)+e^(2x)f'(x)]dx=
Text Solution
|
- IF int e^(2x ) f'(x) dx = g(x) , then int (e^(2x ) f(x)+ e^(2x ...
Text Solution
|