Home
Class 12
MATHS
Given the z1, z2 and z3 are complex numb...

Given the `z_1, z_2` and `z_3` are complex numbers with `|z_1|=1, |z_2|=1 ,|z_3|=1,` and `z_1+z_2+z_3=1` and `z_1z_2z_3=1` find `|(z_1+2)(z_2+2)(z_3+2)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given the z_(1),z_(2) and z_(3) are complex numbers with |z_(1)|=1,|z_(2)|=1,|z_(3)|=1, and z_(1)+z_(2)+z_(3)=1 and z_(1)z_(2)z_(3)=1 find |(z_(1)+2)(z_(2)+2)(z_(3)+2)|

If z_1, z_2, z_3 are complex numbers such that |z_1|= |z_2|= |z_3| =|1/z_1+1/z_2+1/z_3|=1, |z_1+z_2+z_3| is :

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If |z_1|=|z_2|=|z_3|=|(1)/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| = ...... .

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot