Home
Class 12
MATHS
सिद्ध कीजिए कि: |(1,1,1),(alpha , be...

सिद्ध कीजिए कि:
`|(1,1,1),(alpha , beta , gamma ),(beta gamma , gamma alpha , alpha beta )|=(alpha - beta )(beta -gamma )(gamma -alpha ).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(alpha, beta, gamma),(alpha^(2), beta^(2), gamma^(2)),(beta+gamma , gamma + alpha, alpha + beta)| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha + beta + gamma) .

Evaluate the following: |[1,1,1],[alpha, beta, gamma],[beta gamma, gamma alpha, alpha beta]|

Evaluate the following: |[1,1,1],[alpha, beta, gamma],[beta gamma, gama alpha, alpha beta]|

Using properties of determinant prove that |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Using properties of determinants, prove the following |(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that, |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Consider Delta=|(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)| Show that Delta=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

Using properties of determinants prove that : {:|( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) |:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

Using properties of determinants in Exercises prove that : {:[( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) ]:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

Using properties of determinants in Exercises prove that : {:|( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) |:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )