Home
Class 12
MATHS
If y= x sin(logx) + xlogx, prove that x^...

If `y= x sin(logx) + xlogx`, prove that `x^2 (d^2y)/(dx^2) - x dy/dx + 2y = x logx`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF y=xsin(logx)+xlogx, Prove that, x^2(d^2y)/(dx^2)-xdy/dx+2y=2xlogx

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=Acos(logx)+\ Bsin(logx) , prove that x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0

If y=sin(logx) prove that x^2(d^2y)/dx^2+xdy/dx+y=0 .

If y = a cos(logx) + b sin(log x) , show that, x^2(d^2y)/(dx^2)+x(dy)/(dx) + y = 0

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=asin(logx)+bcos(logx) , prove that : x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

Find dy/dx if y=x.logx

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)