Home
Class 12
MATHS
Evaluate lim(xto0) (1-cosmx)/(1-cosnx)....

Evaluate `lim_(xto0) (1-cosmx)/(1-cosnx).`

Text Solution

Verified by Experts

The correct Answer is:
`m^(2)//n^(2)`

`underset(xto0)lim(1-cosmx)/(1-cosnx)=underset(xto0)lim{(2"sin"^(2)(mx)/(2))/(2"sin"^(2)(n)/(2)x)}`
`=underset(xto0)lim[{("sin"(mx)/(2))/((mx)/(2)}}^(2)(m^(2)x^(2))/(4)xx(1)/({("sin"(nx)/(2))/((nx)/(2))}^(2))xx(4)/(n^(2)x^(2))]`
`=(m^(2))/(n^(2))`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.7|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(1-cos2x)/(1-cos4x)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate lim_(xto0) (cosx)^(cotx).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate (i)lim_(xrarr0)((1-cos 4x)/(1-cos5x)) (ii) lim_(xrarr0)((1-cosmx)/(1-cosnx)).

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate lim_(xto0)|x|^(sinx)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)