Home
Class 12
MATHS
Evalaute lim(xto0) (x2^(x)-x)/(1-cosx)...

Evalaute `lim_(xto0) (x2^(x)-x)/(1-cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x2^x - x}{1 - \cos x} \] we will follow these steps: ### Step 1: Identify the Form First, we substitute \(x = 0\) directly into the expression: \[ \frac{0 \cdot 2^0 - 0}{1 - \cos(0)} = \frac{0 - 0}{1 - 1} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. **Numerator:** The numerator is \(x2^x - x\). We differentiate it: \[ \frac{d}{dx}(x2^x - x) = \frac{d}{dx}(x2^x) - \frac{d}{dx}(x) \] Using the product rule for the first term: \[ \frac{d}{dx}(x2^x) = 2^x + x \cdot 2^x \ln(2) \] So, the derivative of the numerator becomes: \[ 2^x + x \cdot 2^x \ln(2) - 1 \] **Denominator:** The denominator is \(1 - \cos x\). We differentiate it: \[ \frac{d}{dx}(1 - \cos x) = \sin x \] ### Step 3: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{2^x + x \cdot 2^x \ln(2) - 1}{\sin x} \] ### Step 4: Substitute \(x = 0\) Again Now we substitute \(x = 0\): \[ \frac{2^0 + 0 \cdot 2^0 \ln(2) - 1}{\sin(0)} = \frac{1 + 0 - 1}{0} = \frac{0}{0} \] Again, we have an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 5: Differentiate Again We differentiate the numerator and denominator again. **Numerator:** Differentiating \(2^x + x \cdot 2^x \ln(2) - 1\): \[ \frac{d}{dx}(2^x) + \frac{d}{dx}(x \cdot 2^x \ln(2)) = 2^x \ln(2) + (2^x \ln(2) + x \cdot 2^x \ln^2(2)) \] This simplifies to: \[ 2^x \ln(2) + 2^x \ln(2) + x \cdot 2^x \ln^2(2) = 2 \cdot 2^x \ln(2) + x \cdot 2^x \ln^2(2) \] **Denominator:** Differentiating \(\sin x\): \[ \frac{d}{dx}(\sin x) = \cos x \] ### Step 6: Rewrite the Limit Again Now we have: \[ \lim_{x \to 0} \frac{2 \cdot 2^x \ln(2) + x \cdot 2^x \ln^2(2)}{\cos x} \] ### Step 7: Substitute \(x = 0\) Again Substituting \(x = 0\): \[ \frac{2 \cdot 2^0 \ln(2) + 0 \cdot 2^0 \ln^2(2)}{\cos(0)} = \frac{2 \ln(2)}{1} = 2 \ln(2) \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{x2^x - x}{1 - \cos x} = 2 \ln(2) \]

To evaluate the limit \[ \lim_{x \to 0} \frac{x2^x - x}{1 - \cos x} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.7|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

Evaluate lim_(xto0) (e-(1+x)^(1//x))/(x) .

Evalaute lim_(xto1) (1+logx-x)/(1-2x+x^(2))

Evaluate, lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x)

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .