Home
Class 12
MATHS
lim(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt...

`lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)`

Text Solution

Verified by Experts

The correct Answer is:
`-12ln2xxln3`

`underset(xto0)lim((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)`
`=underset(xto0)lim((3^(x)-1)(4^(x)-1))/(sqrt((2cosx+7))-3)`
`=underset(xto0)lim((3^(x)-1)(4^(x)-1)(sqrt(2cosx+7))+3)/((2cosx+7-9))`
`=underset(xto0)lim(((3^(x)-1))/(x)xx((4^(x)-1))/(x)(sqrt((2cosx+7))+3))/((-2(1-cosx))/(x^(2)))`
`=(("1n "3)("1n "4)6)/(-2xx(1)/(2))=-6" 1n "3xx" 1n "4`
`=-12" 1n "2xx" 1n "3`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.7|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr0)((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cos x+7)-3))

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate the following Limits lim_(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+x^(2)))

The value of lim_(xto0) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

The value of the limit lim_(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt(x))+a^(1//sqrt(x))),agt1, is

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

If lim_(xto0) (f(x))/(sin^(2)x)=8,lim_(xto0) (g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " lim_(xto0) (1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(xto0)(sin2x)/(1-sqrt(1-x))