Home
Class 12
MATHS
Show that the lim(xto2) ((sqrt(1-cos{2(x...

Show that the `lim_(xto2) ((sqrt(1-cos{2(x-2)}))/(x-2))` doesnot exist.

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(xto2)lim((sqrt(1-cos2(x-2)))/(x-2))=underset(xto2)lim(sqrt(2)|sin(x-2)|)/(x-2)`
Now, `underset(xto2^(+))lim(sqrt(2)|sin(x-2)|)/(x-2)=underset(xto2^(+))lim(sqrt(2)sin(x-2))/(x-2)=sqrt(2)`
and `underset(xto2^(-))lim(sqrt(2)|sin(x-2)|)/(x-2)=underset(xto2^(-))lim(-sqrt(2)sin(x-2))/((x-2))=-sqrt(2)`
Hence, limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto3)sqrt(1-cos2(x-3))/(x-3)

The value of lim_(xto2)sqrt(1-cos 2(x-2))/(x-2) , is

(lim)_(x rarr2)((sqrt(1-cos{2(x-2)}))/(x-2))(1) does not exist (2) equals sqrt(2)(3) equals -sqrt(2)(4) equals (1)/(sqrt(2))

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Statement 1:lim_(x rarr0)(sqrt(1-cos2x))/(x) does not existe.Statement 2:f(x)=(sqrt(1-cos2x))/(x) is not defined at x=0

lim_(xto0)(sin2x)/(1-sqrt(1-x))

Show that lim_(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.