Home
Class 12
MATHS
Let g(x)=int(0)^(x)f(t)dt, where f is su...

Let `g(x)=int_(0)^(x)f(t)dt`, where `f` is such that `1/2lef(t)le1`, for `tepsilon[0,1]` and `0lef(t)le1/2`, for `tepsilon[1,2]`. Then prove that `1/2leg(2)le3/2`.

Text Solution

Verified by Experts

`g(x)=int_(0)^(x)f(t)dt`
`:.g(2)=int_(0)^(2)f(t)dt=int_(0)^(1)f(t)dt+int_(1)^(2)f(t)dt`
Now `1/2lef(t)le1` for `tepsilon[0,1]`
`impliesint_(0)^(1)1/2dtleint_(0)^(1)f(t)dtleint_(0)^(1)1 dt`
`implies 1/2 le int_(0)^(1)f(t)dtle1`……………….1
Also `0lef(t)le1/2` for `tepsilon[1,2]`
`implies int_(1)^(2)0dt le int_(1)^(2)f(t)le int_(1)^(2)1/2dt`
`implies 0 le int_(1)^(2) f(t) dt le 1/2`...............2
Adding 1 and 2 we get.
`1/2 le int_(0)^(1)f(t)+int_(1)^(2)f(t)dtle3/2`
`implies1/2le int_(0)^(2)f(t)dtle3/2`
`implies1/2 le g(2)le3/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=int_(0)^(x)f(t).dt, where f is such that (1)/(2)<=f(t)<=1 for t in[0,1] and 0<=f(t)<=(1)/(2) for t in[1,2] .Then g(2) satisfies the inequality

Let g (x) int_(0)^(x) f(t) dy=t , where f is such that (1)/(2) le f (t) le 1 for tin [0,1] and 0 le f (t) le (1)/(2) for t in [1 ,2] . then . g (2) satis fies the inequality

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let g(x)=int_(0)^(x) f(t) dt , where f is continuous function in [0,3] such that 1/3 le f(t) le 1 for all t in [0,1] and 0 le f(t) le 1/2 for all tin (1,3] . The largest possible interval in which g(3) lies is:

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

CENGAGE-DEFINITE INTEGRATION -JEE Advanced Previous Year
  1. Let g(x)=int(0)^(x)f(t)dt, where f is such that 1/2lef(t)le1, for teps...

    Text Solution

    |

  2. Let f be a non-negative function defined on the interval .[0,1].If int...

    Text Solution

    |

  3. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  6. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  7. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  8. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  9. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  10. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  11. Evaluate: int(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

    Text Solution

    |

  12. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  13. Let f be a real-valued function defined on interval (0,oo),by f(x)=lnx...

    Text Solution

    |

  14. Let S be the area of the region enclosed by y=e^-x^2,y=0,x=0,a n dx=1....

    Text Solution

    |

  15. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  16. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  17. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1...

    Text Solution

    |

  18. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  19. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^4x-3tan^2x for all x in (-pi/2,...

    Text Solution

    |

  20. Let f(x)=lim(n->oo)((n^n(x+n)(x+n/2)....(x+n/n))/(n!(x^2+n^2)(x^2+n^2/...

    Text Solution

    |

  21. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |