Home
Class 12
MATHS
Evaluate int(0)^(pi)(sin 6x)/(sinx) dx....

Evaluate `int_(0)^(pi)(sin 6x)/(sinx) dx`.

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\pi} \frac{\sin(6x)}{\sin(x)} \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, \( a = \pi \). Therefore, we can rewrite the integral as follows: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^( pi)(dx)/(1+sin x)

Evaluate int_(0)^(pi//4)(dx)/(1+sinx)

Evaluate int_(0)^(pi)(x)/((1+sinx))dx .

int_(0)^(pi)(x)/(1+sinx)dx .

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

Evaluate :int_(0)^( pi)(1)/(1+sin x)dx

Evaluate: int_(0)^( pi/2)(dx)/(1+sin x)

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx