Home
Class 12
MATHS
If In=int0^1(dx)/((1+x^2)^n); n in N , ...

If `I_n=int_0^1(dx)/((1+x^2)^n); n in N ,` then prove that `2nI_(n+1)=2^(-n)+(2n-1)I_n`

Text Solution

Verified by Experts

`I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n))`
`=|1/((1+x^(2))^(n)) . X |_(0)^(1)-int_(0)^(1)n(1+x^(2))^(-n-1)2x.xdx`
`=1/(2^(n))+n int_(0)^(1) (2x^(2))/((1+x^(2))^(n+1))dx`
`=1/(2^(n))+2n int_(0)^(1)(dx)/((1+x^(2))^(n))-2n int_(0)^(1)(dx)/((1+x^(2))^(n+1))`
`=1/(2^(n))+2nI_(n)-2nI_(n+1)`
or `(2n-1)I_(n)+1/(2^(n))=2nI_(n+1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_n=intdx/(x^2+a^2)^n,ninN , then show that: I_(n+1)=1/(2na^2)x/((x^2+a^2)^n)+(2n-1)/(2n). 1/a^2I_n

If I_(n)=int(x^(n)dx)/(sqrt(x^(2)+a)) then prove that I_(n)+(n-1)/(n)al_(n-2)=(1)/(n)x^(n-1)*sqrt(x^(2)+a)

If I_n=int_0^ooe^(-x)x^(n-1)log_exdx , then prove that I_(n+2)-(2n+1)I_(n+1)+n^2I_n=0

If I_(n)=int_(0)^(1)x^(n)(tan^(-1)x)dx, then prove that(n+1)I_(n)+(n-1)I_(n-2)=-(1)/(n)+(pi)/(2)

If I_(n)=int(x^(n))/(1+x^(2))dx, where n in N , then : I_(n+2)+I_(n)=

For n in N, prove that (n+1)[n!n+(n-1)!(2n-1)+(n-2)!(n-1)]=(n+2)!

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If u_(n)=int_(0)^((pi)/(2))theta sin^(n)theta d theta and n>=1, then prove that u_(n)=((n-1)/(n))u_(n-2)+(1)/(n^(2))

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

CENGAGE-DEFINITE INTEGRATION -JEE Advanced Previous Year
  1. If In=int0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI(n+1)=2^(-n...

    Text Solution

    |

  2. Let f be a non-negative function defined on the interval .[0,1].If int...

    Text Solution

    |

  3. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  6. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  7. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  8. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  9. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  10. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  11. Evaluate: int(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

    Text Solution

    |

  12. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  13. Let f be a real-valued function defined on interval (0,oo),by f(x)=lnx...

    Text Solution

    |

  14. Let S be the area of the region enclosed by y=e^-x^2,y=0,x=0,a n dx=1....

    Text Solution

    |

  15. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  16. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  17. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1...

    Text Solution

    |

  18. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  19. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^4x-3tan^2x for all x in (-pi/2,...

    Text Solution

    |

  20. Let f(x)=lim(n->oo)((n^n(x+n)(x+n/2)....(x+n/n))/(n!(x^2+n^2)(x^2+n^2/...

    Text Solution

    |

  21. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |