Home
Class 12
MATHS
Evaluate the following : int(0)^(pi)(dx)...

Evaluate the following : `int_(0)^(pi)(dx)/(1+sinx)`

Text Solution

Verified by Experts

The correct Answer is:
NA

`int_(0)^(pi)(dx)/(1+sinx)=int_(0)^(pi)(1-sinx)/(1-sin^(2)x) dx=int_(0)^(pi)(1-sin x)/(cos^(2)x) dx`
`=int_(0)^(pi)(sec^(2)x-sec x tan x)dx`
`=|tanx-secx|_(0)^(pi)`
`=(tanpi-secpi)-(tan 0-sec0)`
`=0-(-1)-(0-1)=1+1=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi//2)(sinx)/(sinx+cosx)dx

Evaluate the following : int_(0)^(pi//2)(dx)/(3+5sinx).

Evaluate the following : int_(0)^(pi//2)(1)/(5+4 sinx)dx

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate the following : int_(0)^(pi//2)(sinx cos x)/((2sinx+1)(sin x+1))dx .

Evaluate the following : int_(0)^(pi//2)(sinx-cosx)/(1+sinx.cosx)dx

Evaluate the following : int_(0)^(pi//2)(cosx)/((4+sinx)(3+sinx))dx

Evaluate the following : int_(pi//2)^(pi)e^(x)((1-sinx)/(1-cosx))dx.

Find the value of the following: int_0^(pi/4) dx/(1-sinx)

Evaluate the following integral: int_0^pi(sinx)/(sinx+cosx)dx