Home
Class 12
MATHS
Evaluate: int0^(1/(sqrt(2)))(sin^(-1)x)/...

Evaluate: `int_0^(1/(sqrt(2)))(sin^(-1)x)/((1-x^2)sqrt(1-x^2))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/4-1/2 log2`

Put `x=sin theta`.So `dx=cos theta d theta`
When `x=0, theta=0`, when `x=1/(sqrt(2)),theta=(pi)/4`
`:.` Given integral
`=int_(0)^(pi//4)(sin^(-1)(sin theta)cos theta d theta)/((1-sin^(2) theta)^(3//2))`
`=int_(0)^(pi//4)(theta cos theta)/(cos^(3) theta) d theta= int_(1)^(pi//4) underset(I)(theta).underset(II)(sec^(2)) theta d theta`
`=|theta tan theta |_(0)^(pi//4)-int_(0)^(pi//4)1.tan d theta`
`=(pi)/4 "tan" (pi)/4+log cos theta|_(0)^(pi//4)`
`=(pi)/4+"log cos"(pi)/4-"log cos"=(pi)/4+"log"1/(sqrt(2))`
`=(pi)/4+log1-log(2)^(1//2)=(pi)/4-1/2 log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx=

int_(0)^(1//sqrt(2))(sin^(-1)x)/((1-x^(2))^(3//2))dx=?

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int_(0)^(1)(1)/(sqrt(1-x^(2)))sin^(-1)(2x sqrt(1-x^(2)))dx

Evaluate :int_(0)^(sqrt(3))(sin^(-1)(2x))/(1+x^(2))dx

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .

Evaluate: int e^(x)(sqrt(1-x^(2))sin^(-1)x+1)/(sqrt(1-x^(2)))dx

Evaluate: int(1)/(sqrt(1-x^(2))(sin^(-1)x)^(2))dx

Find:int_(0)^((1)/(sqrt(2)))(sin^(-1)x)/((1-x^(2))^((3)/(2)))dx

Evaluate: int_(0)^((1)/(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx