Home
Class 12
MATHS
Evaluate the following : int(0)^(pi//2)(...

Evaluate the following : `int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We can factor out \( \cos^2 x \) from the denominator: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\cos^2 x \left( a^2 + b^2 \tan^2 x \right)}. \] ### Step 2: Substitute for \( \tan x \) Next, we make the substitution \( z = \tan x \). Then, we have: \[ dx = \frac{dz}{\sec^2 x} = \frac{dz}{1 + z^2}. \] The limits of integration change as follows: - When \( x = 0 \), \( z = \tan(0) = 0 \). - When \( x = \frac{\pi}{2} \), \( z = \tan\left(\frac{\pi}{2}\right) = \infty \). Substituting these into the integral gives: \[ I = \int_{0}^{\infty} \frac{dz}{(a^2 + b^2 z^2)(1 + z^2)}. \] ### Step 3: Factor the Denominator Now we can express the integral as: \[ I = \int_{0}^{\infty} \frac{dz}{b^2 \left( \frac{a^2}{b^2} + z^2 \right)(1 + z^2)}. \] ### Step 4: Use Partial Fraction Decomposition We can use partial fraction decomposition on the integrand: \[ \frac{1}{\left( \frac{a^2}{b^2} + z^2 \right)(1 + z^2)} = \frac{A}{\frac{a^2}{b^2} + z^2} + \frac{B}{1 + z^2}. \] To find \( A \) and \( B \), we multiply through by the denominator: \[ 1 = A(1 + z^2) + B\left(\frac{a^2}{b^2} + z^2\right). \] ### Step 5: Solve for Coefficients Setting \( z = 0 \): \[ 1 = A + B\frac{a^2}{b^2} \implies B = \frac{1 - A}{\frac{a^2}{b^2}}. \] Setting \( z = i \): \[ 1 = A(1 - 1) + B\left(\frac{a^2}{b^2} - 1\right) \implies B = \frac{1}{\frac{a^2}{b^2} - 1}. \] ### Step 6: Integrate Each Term Now we can integrate each term separately. The integral of \( \frac{1}{\frac{a^2}{b^2} + z^2} \) is: \[ \frac{1}{\sqrt{\frac{a^2}{b^2}}} \tan^{-1}\left(\frac{z}{\sqrt{\frac{a^2}{b^2}}}\right). \] The integral of \( \frac{1}{1 + z^2} \) is: \[ \tan^{-1}(z). \] ### Step 7: Combine Results Combining the results and evaluating from \( 0 \) to \( \infty \): \[ I = \frac{1}{b^2} \left( \frac{b}{a} \cdot \frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{\pi}{2ab}. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi}{2ab}. \]

To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx

Evaluate the following : int_(0)^(pi//2)(1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx .

Evaluate the following : int_(0)^(pi//2)x sin x dx

Evaluate int_(0)^( pi)(xdx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

Evaluate: int_(0)^( pi)(xdx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

Evaluate :int_(0)^( pi/2)(a^(2)cos^(2)x+b^(2)sin^(2)x)dx

Evaluate int_(0)^(pi)(x)/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx .

int_(0)^((pi)/(2))(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)=(pi)/(2ab)(a,b>0)

What is int_(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal to ?