Home
Class 12
MATHS
Evaluate: int(pi//6)^(pi//4)(1+cotx)/(e^...

Evaluate: `int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx`

Text Solution

Verified by Experts

The correct Answer is:
`2e^(-pi//6)-sqrt(2)e^(-pi//4)`

`I=int_(pi//6)^(pi//4) e^(-x)(cosecx+cot x cosec x)dx`
Put `x=timpliesdx=-dt`
`:. I=-int_(-pi//6)^(-pi//4) e^(t)(-cosect+cot.cosec)dt`
`=int_(-pi//6)^(-pi//4)e^(t)(cosect-cot t. cosec t)dt`
`=e^(t)cosec t|_(-pi//6)^(-pi//4)`
`=-sqrt(2)e^(-pi//4)+2d^(-pi//6)`
`=2e^(-pi//6)-sqrt(2)e^(-pi//4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

If the value of the definite integral int_((pi)/(6))^((pi)/(4))(1+cot x)/(e^(x)sin x)dx, is equal to ae^(-(pi)/(6))+be^(-(pi)/(4)) then (a+b) equals

Evaluate: int_(-pi/4)^( pi/4)(tan^(2)x)/(1+e^(x))dx

Evaluate: int_(-pi/4)^( pi/4)(sec^(2)x)/(1+e^(x))dx

int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate: int_(-pi/2)^( pi/2)(x sin x)/(e^(x)+1)dx

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to