Home
Class 12
MATHS
Evaluate int(0)^(1)(e^(-x)dx)/(1+e^(x))...

Evaluate `int_(0)^(1)(e^(-x)dx)/(1+e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{e^{-x}}{1 + e^{x}} \, dx, \] we will use a substitution method. Let's proceed step by step. ### Step 1: Substitution Let \( e^x = z \). Then, we differentiate both sides to find \( dx \): \[ dx = \frac{dz}{z}. \] Now, we need to change the limits of integration. When \( x = 0 \), \( z = e^0 = 1 \), and when \( x = 1 \), \( z = e^1 = e \). Thus, the limits change from \( x = 0 \) to \( x = 1 \) into \( z = 1 \) to \( z = e \). ### Step 2: Rewrite the Integral Now, substitute \( e^x \) and \( dx \) into the integral: \[ I = \int_{1}^{e} \frac{e^{-x}}{1 + e^{x}} \cdot \frac{dz}{z}. \] Since \( e^{-x} = \frac{1}{z} \) and \( 1 + e^x = 1 + z \), we can rewrite the integral as: \[ I = \int_{1}^{e} \frac{\frac{1}{z}}{1 + z} \cdot \frac{dz}{z} = \int_{1}^{e} \frac{1}{z(1 + z)} \, dz. \] ### Step 3: Simplify the Integral Now we can simplify the integrand: \[ I = \int_{1}^{e} \frac{1}{z(1 + z)} \, dz. \] We can use partial fraction decomposition: \[ \frac{1}{z(1 + z)} = \frac{A}{z} + \frac{B}{1 + z}. \] Multiplying through by \( z(1 + z) \) gives: \[ 1 = A(1 + z) + Bz. \] Setting \( z = 0 \) gives \( A = 1 \). Setting \( z = -1 \) gives \( B = -1 \). Thus, we have: \[ \frac{1}{z(1 + z)} = \frac{1}{z} - \frac{1}{1 + z}. \] ### Step 4: Integrate Now we can integrate: \[ I = \int_{1}^{e} \left( \frac{1}{z} - \frac{1}{1 + z} \right) dz. \] This separates into two integrals: \[ I = \int_{1}^{e} \frac{1}{z} \, dz - \int_{1}^{e} \frac{1}{1 + z} \, dz. \] Calculating these integrals: \[ \int \frac{1}{z} \, dz = \ln |z| \quad \text{and} \quad \int \frac{1}{1 + z} \, dz = \ln |1 + z|. \] Thus, \[ I = \left[ \ln z \right]_{1}^{e} - \left[ \ln(1 + z) \right]_{1}^{e}. \] ### Step 5: Evaluate the Limits Now we evaluate the limits: \[ I = \left( \ln e - \ln 1 \right) - \left( \ln(1 + e) - \ln(1 + 1) \right). \] This simplifies to: \[ I = (1 - 0) - \left( \ln(1 + e) - \ln 2 \right). \] Thus, \[ I = 1 - \ln(1 + e) + \ln 2. \] ### Final Result Therefore, the value of the integral is: \[ I = 1 + \ln 2 - \ln(1 + e). \]

To evaluate the integral \[ I = \int_{0}^{1} \frac{e^{-x}}{1 + e^{x}} \, dx, \] we will use a substitution method. Let's proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)e^(2-3x)dx

Evaluate int_(0)^(1)e^(2-3x)dx

int_(0)^(1)(e^(-x))/(1+e^(-x))dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)x e^(x)dx=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

int_(0)^(1)e^(e^(x))(1+xe^(x))dx

Evaluate: int_(0)^(1)(e^(x))/(sqrt(e^(x)-1))dx