Home
Class 12
MATHS
Prove that int0^(102)(x-1)(x-2)(x-100) ...

Prove that `int_0^(102)(x-1)(x-2)(x-100)` `x(1/((x-1)+1/((x-2))+1/((x-100))dx=101 !-100 !`

Text Solution

Verified by Experts

The correct Answer is:
NA

`I=int_(0)^(102)(x-1)(x-2)……(x-100)`
`xx(1/((x-1))+1/((x-2))+…+1/((x-100)))dx`
`-int_(0)^(102)d/(dx)((x-1)(x-2)………(x-100))dx`
`=[(x-1)(x-2)…………(x-100)]_(0)^(102)`
`=101!-100!`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(102)(x-1)(x-2)dots(x-100)xx((1)/(x-1)+(1)/(x-2)+.(.1)/(x-100))dx=101!-100

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Prove that int_(0)^(x)[x]dx=x[x]-(1)/(2)[x]([x]+1)

Prove that: sum_(k=1)^(100)sin(kx)cos(101-k)x=50sin(101x)

int_((1)/(2))^(2)(1)/(x)sin^(101)(x-(1)/(x))dx=

Evaluate : int_0^(1) ((1)/(1+x^(2))) sin^(-1)""((2x)/(1+x^(2))) dx

(lim)_(x->0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x])=

lim_(x rarr1)[(x^(2)+1)/(x+100)]

Evaluate: 5050(int_(0)^(1)(1-x^(50))^(100)dx)/(int_(0)^(1)(1-x^(50))^(101)dx)