Home
Class 12
MATHS
Show that : int0^1(logx)/((1+x))dx=-int0...

Show that : `int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx`

Text Solution

Verified by Experts

The correct Answer is:
NA

Let `I=int_(0)^(1)(logx)/((1+x))dx`
`=[log x log (1+x)]_(0)^(1)-int_(0)^(1)(log(1+x))/x dx`
`=0-int_(0)^(1)(log(1+x))/x dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int_0^1 log((x)/(1-x))dx=0

int_0^1(dx)/(1-x^2)\

int_(0)^(1)(log(1+x))/(1+x)dx

int(logx-1)/(x)dx

int(log(1-x))/(1-x)dx

int(log(1+x))/(1+x)dx

int7^(x logx)(1+logx)dx=

int_(0)^(1)(log x)dx

int_(0)^(1)(x-1)/(ln x)dx