Home
Class 12
MATHS
If int0^1(e^t)/(1+t)dt=a , then find the...

If `int_0^1(e^t)/(1+t)dt=a ,` then find the value of `int_0^1(e^t)/((1+t)^2)dt` in terms of `a` .

Text Solution

Verified by Experts

The correct Answer is:
`a+1-e/2`

`a=int_(0)^(1)(e^(t))/(1+t)dt=(1/((1+t))e^(t))_(0)^(1)=int_(0)^(1)(e^(t))/((1+t)^(2))dt`
(Integrating by parts)
`=e/2-1+int_(0)^(1)(e^(t))/((1+t)^(2)) dt`
or `int_(0)^(1) (e^(t))/((1+t)^(2))dt=a+1-e/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

2int_(0)^(t)(1-cos t)/(t)dt

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

If int_(0)^(1)(sint)/(1+t)dt=alpha , then find the value of int_(4pi-2)^(4pi)("sin"t/2)/(4pi|2-t|)dt

int_(1)^(a)(ln t)/(t)dt

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

The value of int_(e^(-1))^(e) (dt)/(t(t+1)) is equal to