Home
Class 12
MATHS
Let f be a one to one continuous functio...

Let `f` be a one to one continuous function such that `f(2)=3` and `f(5)=6`. Given `int_(2)^(5)f(x)dx=17`, then find the value of `int_(3)^(7)f^(-1)(x)dx`.

Text Solution

Verified by Experts

The correct Answer is:
`12`

Let `y=f(x)`
`:.x=f^(-1)` and `dy=f'(x)dx`
`I=int_(3)^(7)f^(-1)(x)dx=int_(3)^(7)f^(-1)(y)dy`
Given `f^(-1)(3)=2` and `f^(-1)(7)=5`
`:. I=int_(2)^(5)xf'(x)dx=[x(f(x))]_(2)^(5)-int_(2)^(5)f(x)dx`
`=(5)(7)-(2)(3)-17=12`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7. Given int_(2)^(5)f(x)dx=17 then find the value of int_(3)^(7)f^(-1)(x)dx

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AA x in R. If int_(0)^(1)f(x)dx=1 then find the value of int_(1)^(2)f(x)dx

If f(0)=1,f(2)=3,f'(2)=5, then find the value of int_(0)^(1)xf''(2x)dx

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

If f(x) is a continuous function such that f(x)|0,AA x in[2,10] and int_(4)^(8)f(x)dx=0 then find

If int_(-1)^(4) f(x)=4 and int_(2)^(7) (3-f(x))dx=7 , then the value of int_(2)^(-1) f(x)dx , is

Let f be a strictly increasing and continuous function in [1,5] such that f(1)=0,f(5)=10 If int_(1)^(5)f(x)dx=7, then int_(0)^(10)f^(-1)(x)dx equals:

Let f:R rarr R be a function such that f(2-x)=f(2+x) and f(4-x)=f(4+x), for all x in R and int_(0)^(2)f(x)dx=5. Then the value of int_(10)^(50)f(x)dx is