Home
Class 12
MATHS
Evaluate: ("lim")(nvecoo)(1/(sqrt(4n^2-1...

Evaluate: `("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/6`

Given limit
`=lim_(nto oo) 1/n[n/(sqrt(4n^(2)-1))+n/(sqrt(4n^(2)-2^(2)))+…………+n/(sqrt(4n^(2)-n^(2)))]`
`=lim_(n to oo) 1/n[1/(sqrt(4-(1/n)^(2)))+1/(sqrt(4-(2/n)^(2)))+……………1/(sqrt(4-(n/n)^(2)))]`
`=int_(0)^(1)(dx)/(sqrt(4-x^(2)))=|sin^(-1)x/2|_(0)^(1)="sin"^(-1)1/2-0=(pi)/6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

Find lim_(n rarr oo)S_(n); if S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+......+(1)/(sqrt(3n^(2)+2n-1))

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to