Home
Class 12
MATHS
Lim(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 *...

`Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]`

Text Solution

Verified by Experts

The correct Answer is:
`1/2 tan1`

`lim_(n to oo) [1/(n^(2)) "sec"^(2)1/(n^(2))+2/(n^(2))"sec"^(2) 4/(n^(2))+……..+1/nsec^(2)1]`
`=lim_(nto oo) 1/n sum_(r=1)^(n)r/n"sec"^(2)(r/n)^(2)`
`=int_(0)^(1)x sec^(2) x^(2) dx`
Put `x^(2)=t` so that `2x dx=dt`
When `x=0, t=0`, When `x=1, t=1`
`:. `Required limit `=1/2 int_(0)^(1) sec^(2) t dt `
`=1/2 [tan t]_(0)^(1)=1/2[tan 1-0]`
`=1/2 tan 1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) [(1) / (n ^ (2)) * sec ^ (2) ((1) / (n ^ (2))) + (2) / (n ^ (2)) * sec ^ (2) ((4) / (n ^ (2))) + ............ + (1) / (n) * sec ^ (2) 1]

Evaluate: lim_(n rarr oo)[(1)/(n^(2))sec^(2)(1)/(n^(2))+2/n^(2)sec^(2)(4)/(n^(2))+...+(1)/(n)sec^(2)1]]

lim_(n to oo) [ 1/(n^2) + 2/(n^2) + … + n/(n^2)]

lim_ (n rarr oo) (pi) / (6n) [sec ^ (2) ((pi) / (6n)) + sec ^ (2) (2 * (pi) / (6n)) + .... ..... + sec ^ (2) ((n-1) (pi) / (6n)) + (4) / (3)]

lim_(n to oo) [ 1^2/n^3 + (2^2)/(n^3) + …+ ((n-1)^2)/(n^3)]

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

lim_(n rarr oo)[(1)/(n^(2))sec^(2)((pi)/(3n^(2)))+(2)/(n^(2))sec^ (2)((4 pi)/(3n^(2)))+(3)/(n^(2))sec^(2)((9 pi)/(3n^(2)))+. .....+(1)/(n)sec^(2)((pi)/(3))]