Home
Class 12
MATHS
Evaluate the following limit: lim(nto ...

Evaluate the following limit:
`lim_(nto oo)(sum_(r=1)^(n) sqrt(r)sum_(r=1)^(h)1/(sqrt(r)))/(sum_(r=1)^(n)r)`

Text Solution

Verified by Experts

The correct Answer is:
`8/3`

`lim_(n to oo) (sum_(r=1)^(n)sqrt(r) sum_(r=1)^(n)1/(sqrt(4)))/(sum_(r=1)^(n)r)`
`:.` Limit `=lim_(nto oo) (1/n sum_(r=1)^(n)sqrt(4/n)(1/nsum_(r=1)^(n)sqrt(n/r)))/(1/n sum_(r=1)^(n)r/n)`
`=(int_(0)^(1)sqrt(x)dxint_(0)^(1)(dx)/(sqrt(x)))/(int_(0)^(1)x dx) =8/3`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)(sum_(r=1)^(n)sqrt(r)sum_(r=1)^(n)(1)/(sqrt(tau)))/(sum_(r=1)^(n)r)

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is

lim_(x rarr2)(sum_(r=1)^(n)x^(r)-sum_(r=1)^(n)2^(r))/(x-2)

If lim_(n rarr oo)(sum_(r=1)^(n)sqrt(r)sum_(r=1)^(n)(1)/(sqrt(r)))/(sum_(r=1)^(n)r)=(k)/(3) then the value of k is

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

m sum_(r=1)^(n)(1)/(n)sqrt((n+r)/(n-r))

(sum_(r=1)^(n)r^(4))/(sum_(r=1)^(n)r^(2)) is equal to