Home
Class 12
MATHS
IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(p...

`IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx ,` then find the order in which the values `I_1,I_2,I_3,` exist.

Text Solution

Verified by Experts

The correct Answer is:
`I_(1)gtI_(3)gtI_(2)`

We know that `cosx` is decreasing function in `(0,pi//2)`.
Also `xgtsinx` for `xepsilon(0,pi//2)`
Thus, `cosx lt cos (sinx)`
Further, `xgtsinx` and `cosxepsilon(0,1)` for `xepsilon(0,pi//2)`
`:.cosxgtsin(cosx)`
Thus, `sin (cosx)ltcosxltcos(sinx)`
Hence `int_(0)^(pi//2)sin(cosx)dxlt int_(0)^(pi//2)cosxdx lt int_(0)^(pi//2) cos(sinx)dx`
`impliesI_(2)ltI_(3)ltI_(1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(I)=int_(0)^( pi/2)cos(sin x)dx,I_(2)=int_(0)^((pi)/(2))sin(cos x)d, and I_(3)=int_(0)^((pi)/(2))cos xdx then find the order in which the values I_(1),I_(2),I_(3), exist.

int_0^(pi/2) cosx/(1+sinx)dx

8) int_0^(2pi)cosx dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_0^(pi/2) (Cosx - Sinx)dx

int_(0)^(2pi)(sinx+cosx)dx=

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)