Home
Class 12
MATHS
Find the value of int(0)^(2pi)1/(1+tan^(...

Find the value of `int_(0)^(2pi)1/(1+tan^(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \), we can use properties of definite integrals and symmetry. ### Step 1: Use the property of definite integrals We know that for any function \( f(x) \): \[ \int_0^{2a} f(x) \, dx = \int_0^{2a} f(2a - x) \, dx \] In our case, \( a = \pi \), so we have: \[ I = \int_0^{2\pi} \frac{1}{1 + \tan^4 x} \, dx = \int_0^{2\pi} \frac{1}{1 + \tan^4(2\pi - x)} \, dx \] ### Step 2: Simplify \( \tan(2\pi - x) \) Using the property of the tangent function: \[ \tan(2\pi - x) = -\tan(x) \] Thus, \[ \tan^4(2\pi - x) = \tan^4(x) \] This means: \[ I = \int_0^{2\pi} \frac{1}{1 + \tan^4 x} \, dx = \int_0^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \] This confirms that the function is symmetric about \( \pi \). ### Step 3: Split the integral We can split the integral into two parts: \[ I = \int_0^{\pi} \frac{1}{1 + \tan^4 x} \, dx + \int_{\pi}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \] Using the substitution \( x = 2\pi - t \) in the second integral: \[ \int_{\pi}^{2\pi} \frac{1}{1 + \tan^4 x} \, dx = \int_0^{\pi} \frac{1}{1 + \tan^4(2\pi - t)} (-dt) = \int_0^{\pi} \frac{1}{1 + \tan^4 t} \, dt \] Thus: \[ I = 2 \int_0^{\pi} \frac{1}{1 + \tan^4 x} \, dx \] ### Step 4: Further simplify the integral Now we can evaluate: \[ I = 2 \int_0^{\pi} \frac{1}{1 + \tan^4 x} \, dx \] We can further simplify this integral using the substitution \( x = \frac{\pi}{2} - u \): \[ \tan\left(\frac{\pi}{2} - u\right) = \cot u \] Thus: \[ \tan^4\left(\frac{\pi}{2} - u\right) = \cot^4 u = \frac{1}{\tan^4 u} \] This gives: \[ \int_0^{\pi} \frac{1}{1 + \tan^4 x} \, dx = \int_0^{\pi} \frac{\tan^4 u}{\tan^4 u + 1} \, du \] Adding these two integrals: \[ 2I = \int_0^{\pi} \left( \frac{1}{1 + \tan^4 x} + \frac{\tan^4 x}{1 + \tan^4 x} \right) dx = \int_0^{\pi} 1 \, dx = \pi \] Thus: \[ I = \frac{\pi}{2} \] ### Step 5: Final result Since we have \( I = 2 \int_0^{\pi} \frac{1}{1 + \tan^4 x} \, dx \), we find that: \[ I = \pi \] ### Conclusion The value of the integral is: \[ \int_0^{2\pi} \frac{1}{1 + \tan^4 x} \, dx = \pi \]

To solve the integral \( I = \int_0^{2\pi} \frac{1}{1 + \tan^4 x} \, dx \), we can use properties of definite integrals and symmetry. ### Step 1: Use the property of definite integrals We know that for any function \( f(x) \): \[ \int_0^{2a} f(x) \, dx = \int_0^{2a} f(2a - x) \, dx \] In our case, \( a = \pi \), so we have: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

The value of int_(0)^(pi//2) (1)/(1+tan^(3)x)dx is

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

The value of int_(0)^( pi/2)(dx)/(1+tan^(3)x)(i)0(ii)1(iii(pi)/(2) (iv) (pi)/(4)