Home
Class 12
MATHS
int0^(2pi)sin^(100)xcos^(99)x dx...

`int_0^(2pi)sin^(100)xcos^(99)x dx`

Text Solution

Verified by Experts

The correct Answer is:
`0`

`I=int_(0)^(2pi)sin^(100)xcos^(99)x dx`
Here `f(x)=sin^(100)x cos^(99) x` for which `f(2pi-x)=f(x)`
`:.I=2int_(0)^(pi)sin^(100)xcos^(99)xdx`
`=2int_(0)^(pi)sin^(100)(pi-x)cos^(99)(pi-x)dx`
`=-2int_(0)^(pi)sin^(100)xcos^(99)xdx`
`=-I`
or `2I=` or `I=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

STATEMENT 1:int_(0)^( pi)sin^(100)x cos^(99)xdx is z ero STATEMENT 2:int_(a)^(b)f(x)dx=int_(a+c)^(b+c)f(x-c)dx, and for odd function,int_(-a)^(a)f(x)dx=0

Evaluate the following integral: int_0^(2pi)sin^(100)xcos^(101)x\ dx

int_(0)^(pi)sin^(2)xcos^(3)xdx=0

iint_(0)^(pi)sin^(4)xcos^(6)x dx is equal to

int_(0)^(pi//2)sin^(4)xcos^(5)x dx=

int_(0)^(-pi//2)sin^(5)xcos^(4)xdx

int_0^(2pi)(sin2x)dx

int_0^(2pi)(sin2x)dx

Show that: int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx and hence show that int_0^pi sin^100xcos^99xdx=0

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=