Home
Class 12
MATHS
For Un=int0^1x^n(2-x)^n dx ; Vn=int0^1x^...

For `U_n=int_0^1x^n(2-x)^n dx ; V_n=int_0^1x^n(1-x)^ndxn in N ,` which of the following statement(s) is/are true? `U_n=2^n V_n` (b) `U_n=2^(-n)V_n` `U_n=2^(2n)V_n` (d) `V_n=2^(-2n)U_n`

Text Solution

Verified by Experts

The correct Answer is:
NA

We have `U_(n)=int_(0)^(1)x^(n).(2-x)^(n)dx`
Put `x=2t`
`:. dx=2dt`
`:. U_(n)=2int_(0)^(1//2)2^(n).t^(n)2^(n)(1-t)^(n)dt`
`:.U_(n)=2^(2n+1)int_(0)^(1//2)x^(n)(1-x)^(n)dx`…………..1
Now `V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx`
`=2int_(0)^(1//2)x^(n)(1-x)^(n)dx`................2
From 1 and 2
`U_(n)=2^(2n).V_(n)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

For U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx;V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dxn in N which of the following statement(s) is/are true? (a) U_(n)=2^(n)V_(n)( b) U_(n)=2^(-n)V_(n)(c)U_(n)=2^(2n)V_(n)(d)V_(n)=2^(-2n)U_(n)

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

If I_(n)=int(x^(n))/(1+x^(2))dx, where n in N , then : I_(n+2)+I_(n)=

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

Find sum_(n=1)^n u_n if u_n=sum_(n=0)^n1/2^n .

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is