Home
Class 12
MATHS
Evaluate: int0^pi log(1+cosx)dx...

Evaluate: `int_0^pi log(1+cosx)dx`

Text Solution

Verified by Experts

The correct Answer is:
`-pilog_(e)2`

`I=int_(0)^(pi)log(1+cosx)dx=int_(0)^(pi)log(2"cos"^(2)x/2)dx`
`=int_(0)^(pi)(log2+2"log cos"x/2)dx=pi log 2+2int_(0)^(pi)"log cos"x/2 dx`
`=pi log 2+2xx2int_(0)^(pi//2) log cos t dt, ` where `t=x/2` and `dx=2dt`
`pi log 2=4xx(-(pi)/2 log 2)`
`=-pi log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pilog(1+cosx)dx

Evaluate: int_0^pi1/(1+e^(cosx))dx

Evaluate int_0^(pi/2)sinx.log cosx dx

Evaluate int_0^(pi/2)cosx/(1+cosx+sinx)dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate: int_0^(200pi)sqrt(1+cosx\ )"dx"

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

Evaluate: int_0^pi(e^(cosx))/(e^(cosx)+e^(-cosx))dx

Evaluate: int_0^(pi//4)"log"(1+"t a n x")dx

Evaluate int_0^(pi/2) sqrt(cosx)/(sqrt(cosx)+sqrt(sinx))dx