Home
Class 12
MATHS
Evaluate int(-oo)^(0)(te^(t))/(sqrt(1-e^...

Evaluate `int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt`

Text Solution

Verified by Experts

The correct Answer is:
`-(pi)/2log_(e)2`

`I=int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt`
Put `e^(t)=x`
`:.I=int_(0)^(1)(log_(e)x)/(sqrt(1-x^(2)))dx`
Put `x=sin theta`
`:. I=int_(0)^(pi//2) log_(e)sin theta d theta =(pi)/2 "log"_(e)1/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(oo)(dt)/(t)

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

" (a) "int(dt)/(sqrt(1-t^(2)))

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

int_(0)^(1)t^(2)sqrt(1-t)*dt

Let A=int_(0)^(1)(e^(t))/(t+1)dt, then the value of (int_(0)^(1)te^(t^^2))/(t^(2)+1)dtA^(2)(b)(1)/(2)A(c)2A(d)(1)/(2)A^(2)

int(dt)/(t+sqrt(a^(2)-t^(2)))