Home
Class 12
MATHS
Let p=1+1/(sqrt(2))+1/(sqrt(3))+….+1/(sq...

Let `p=1+1/(sqrt(2))+1/(sqrt(3))+….+1/(sqrt(120))` and `q=1/(sqrt(2))+1/(sqrt(3))+….+1/(sqrt(121))` then

A

`pgt20`

B

`qlt20`

C

`p+qlt40`

D

`p+qgt40`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions for \( p \) and \( q \): 1. **Define the expressions**: - \( p = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{120}} \) - \( q = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{121}} \) 2. **Identify the function**: - Let \( f(x) = \frac{1}{\sqrt{x}} \). This function is decreasing for \( x > 0 \). 3. **Estimate \( p \)**: - We can estimate \( p \) using integration: \[ p = 1 + \sum_{n=2}^{120} \frac{1}{\sqrt{n}} > \int_{1}^{121} f(x) \, dx \] - Calculate the integral: \[ \int f(x) \, dx = \int \frac{1}{\sqrt{x}} \, dx = 2\sqrt{x} + C \] - Evaluating the definite integral: \[ \int_{1}^{121} \frac{1}{\sqrt{x}} \, dx = 2\sqrt{121} - 2\sqrt{1} = 2 \times 11 - 2 \times 1 = 22 - 2 = 20 \] - Therefore, \( p > 20 \). 4. **Estimate \( q \)**: - Similarly, for \( q \): \[ q = \sum_{n=2}^{121} \frac{1}{\sqrt{n}} < \int_{1}^{121} f(x) \, dx \] - From the previous calculation, we have: \[ q < 20 \] 5. **Combine the results**: - From the estimates of \( p \) and \( q \): \[ p > 20 \quad \text{and} \quad q < 20 \] - Adding these inequalities: \[ p + q > 20 + (q < 20) \implies p + q > 40 \] 6. **Conclusion**: - The valid option based on our calculations is: \[ \text{Option 4: } p + q > 40 \]

To solve the problem, we need to analyze the expressions for \( p \) and \( q \): 1. **Define the expressions**: - \( p = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{120}} \) - \( q = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{121}} \) 2. **Identify the function**: - Let \( f(x) = \frac{1}{\sqrt{x}} \). This function is decreasing for \( x > 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

1+2sqrt(3)-1sqrt(3)

(-sqrt(3)/2 + sqrt(3))/(1/sqrt(2)-1)=

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))

CENGAGE-DEFINITE INTEGRATION -Exercise (Multiple)
  1. If f(x) is integrable over [1,2] then int(1)^(2)f(x)dx is equal to

    Text Solution

    |

  2. If L=lim(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(...

    Text Solution

    |

  3. Let p=1+1/(sqrt(2))+1/(sqrt(3))+….+1/(sqrt(120)) and q=1/(sqrt(2))+1/(...

    Text Solution

    |

  4. Let Sn=sum(k=0)^n n/(n^2+k n+k^2) and Tn=sum(k=0)^(n-1)n/(n^2+k n+k...

    Text Solution

    |

  5. T h ev a l u eofint0^1(2x^2+3x+3)/((x+1)(x^2+2x+2))dxi s pi/4+2log2-...

    Text Solution

    |

  6. Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, where xgt0, Then

    Text Solution

    |

  7. If inta^b|sinx|dx=8 and int0^(a+b)|cosx| dx=9 , then find the val...

    Text Solution

    |

  8. Iff(x)=int0^x2|t|dt ,t h e n g(x)=x|x| g(x) is monotonic g(x) is di...

    Text Solution

    |

  9. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  10. T h ev a l u eofint0^oo(dx)/(1+x^4)i s s a m ea st h a tofint0^oo(x^...

    Text Solution

    |

  11. The value of int0^1e^x^(2-x)dx is <1 (b) >1 (c) > e^(-1/4) (d) <e^(...

    Text Solution

    |

  12. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  13. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  14. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  15. If f(2-x)=f(2+x) and f(4x)=f(4+x) for all x and f(x) is a function for...

    Text Solution

    |

  16. Off(x)=int0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi)...

    Text Solution

    |

  17. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

    Text Solution

    |

  18. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  19. L e tf:[1,oo)vecRa n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an ...

    Text Solution

    |

  20. Iff(x)=inta^x[f(x)]^(-1)dxa n dinta^1[f(x)]^(-1)dx=sqrt(2),t h e n f(...

    Text Solution

    |