Home
Class 12
MATHS
If f(x)=int(0)^(x)|t-1|dt, where 0lexle2...

If `f(x)=int_(0)^(x)|t-1|dt`, where `0lexle2`, then

A

range of `f(x)` is `[0,1]`

B

`f(x)` is differentiable at `x=1`

C

`f(x)=cos^(-1)x` has two real roots

D

`f'(1//2)=1//2`

Text Solution

Verified by Experts

The correct Answer is:
B

Given that `f(x)=int_(0)^(x)|t-1|dt`
`=int_(0)^(x)(1-t)dt, 0lexle1`
`=x-(x^(2))/2`
Also `f(x)=int_(0)^(1)(1-t)dt+int_(1)^(x)(t-1)dt`, where `1 le x le 2`
`=1/2+(x^(2))/2-x+1/2=(x^(2))/2-x+1`
Thus `f(x)={(x-(x^(2))/2,0lexle1),((x^(2))/2-+1,lt x le2):}`
`:.f'(x)={(1-x,0lexlt1),(x-1,1ltxlt2):}`
Thus `f(x) `is continuous as well as differentiable at `x=1`
Also, `f(x)=cos^(-1)x` has one real root. Draw the graph and verify.
For range of `f(x)`:
`f(x)=int_(0)^(x)|t-1|dt` is the value of bounded by the curve `y=|t-1|` and `x` -axis betwen the limits `t=0` and `t=x`.
Obviously minimum area is obtained when `t=0` and `t=x` coincide or `x=0`.
Maximum value of area occurs when `t=2`.
Hence `f(2)=` ara of shaded region `=1`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the range of the function f (x) = int _(0) ^(x) |t-1| dt, where 0 le x le 2

Let f(x)=int_(0)^(1)|x-t|dt, then

If f(x)=int_(0)^(x)tf(t)dt+2, then

If f(x)=int_(0)^(2)te^(-t)dt then

If f(x)=int_(0)^(1)e^(|t-x|)dt where (0<=x<=1) then maximum value of f(x) is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt where x>0, then the values of of ^(1) satisfying the equation f(x)+f((1)/(x))=2 is

If f(x)={int_(0)^(x)|1-t|dt;x>1,x-(1)/(2);x<=1 then

If f(x)=int_(-1)^(x)|t|dt , then for any x ge0,f(x) is equal to

If _(0)^(x)sin(f(t))dt=(x+2)int_(0)^(x)t sin(f(t))dt, wherex >0 then show that f'(x)cot f(x)+(3)/(1+x)=0

CENGAGE-DEFINITE INTEGRATION -Exercise (Multiple)
  1. Iff(x)=int0^x2|t|dt ,t h e n g(x)=x|x| g(x) is monotonic g(x) is di...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h ev a l u eofint0^oo(dx)/(1+x^4)i s s a m ea st h a tofint0^oo(x^...

    Text Solution

    |

  4. The value of int0^1e^x^(2-x)dx is <1 (b) >1 (c) > e^(-1/4) (d) <e^(...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. If f(2-x)=f(2+x) and f(4x)=f(4+x) for all x and f(x) is a function for...

    Text Solution

    |

  9. Off(x)=int0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi)...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)vecRa n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an ...

    Text Solution

    |

  13. Iff(x)=inta^x[f(x)]^(-1)dxa n dinta^1[f(x)]^(-1)dx=sqrt(2),t h e n f(...

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}d ui se q u a lto int0^x(x-u)f(u)d u int0^x uf(...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x)[x]dx=int(0)^(|x|)x dx, (where [.] and {.} denotes the g...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function the for alpha epsilon(0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |