Home
Class 12
MATHS
A continuous function f(x) satisfies the...

A continuous function `f(x)` satisfies the relation `f(x)=e^x+int_0^1 e^xf(t)dt` then `f(1)=`

A

`f(0)lt0`

B

`f(x)` is a decreasing function

C

`f(x)` is increasing function

D

`int_(0)^(1)f(x)dxgt0`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt-e^(x)+ke^(x)`, where `k=int_(0)^(1)f(t)dt`
`:. k=int_(0)^(1)(e^(t)+ke^(t))dt=e+ke-1-k`
`:.k=(e-1)/(2-e)`
Thus `f(x)=e^(x)(1+(e-1)/(2-e))=(e^(x))/(2-e)`
obviously,`f(0)=1/(2-e)lt0`
Also `f'(x)=(e^(x))/(2-e)lt 0` for `AAxepsilonR`.
Hence `f(x)` is a decreasing function.
Also`int_(0)^(1)f(x)dx=int_(0)^(1)(e^(x))/(2-e)dx`
`=[(e^(x))/(2-e)]_(0)^(1)`
`=(e-1)/(2-e) lt0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

A continuous function f: R rarrR satisfies the equation f(x)=x+int_(0)^(1) f(t)dt. Which of the following options is true ?

Find f(x) if it satisfies the relation f(x)=e^(x)+int_(0)^(1)(x+ye^(x))f(y)dy

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

Let f be a continuous function on R and satisfies f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt, then which of the following is(are) correct?

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Let f:R rarr R be a continuous function which satisfies f(x)=int_(0)^(x)f(t)dt. Then the value of f(1n5) is

CENGAGE-DEFINITE INTEGRATION -Exercise (Multiple)
  1. Iff(x)=int0^x2|t|dt ,t h e n g(x)=x|x| g(x) is monotonic g(x) is di...

    Text Solution

    |

  2. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  3. T h ev a l u eofint0^oo(dx)/(1+x^4)i s s a m ea st h a tofint0^oo(x^...

    Text Solution

    |

  4. The value of int0^1e^x^(2-x)dx is <1 (b) >1 (c) > e^(-1/4) (d) <e^(...

    Text Solution

    |

  5. If int(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10, then

    Text Solution

    |

  6. The values of a for which the integral int0^2|x-a|dxgeq1 is satisfied ...

    Text Solution

    |

  7. If f(x)=int(0)^(x)|t-1|dt, where 0lexle2, then

    Text Solution

    |

  8. If f(2-x)=f(2+x) and f(4x)=f(4+x) for all x and f(x) is a function for...

    Text Solution

    |

  9. Off(x)=int0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi)...

    Text Solution

    |

  10. If I(n)=int(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

    Text Solution

    |

  11. IfIn=int0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following...

    Text Solution

    |

  12. L e tf:[1,oo)vecRa n df(x)=int1^x(e^t)/t dt-e^xdotT h e n f(x) is an ...

    Text Solution

    |

  13. Iff(x)=inta^x[f(x)]^(-1)dxa n dinta^1[f(x)]^(-1)dx=sqrt(2),t h e n f(...

    Text Solution

    |

  14. A continuous function f(x) satisfies the relation f(x)=e^x+int0^1 e^xf...

    Text Solution

    |

  15. int0^x{int0^uf(t)dx}d ui se q u a lto int0^x(x-u)f(u)d u int0^x uf(...

    Text Solution

    |

  16. Which of the following statement(s) is/are TRUE?

    Text Solution

    |

  17. If int(0)^(x)[x]dx=int(0)^(|x|)x dx, (where [.] and {.} denotes the g...

    Text Solution

    |

  18. Consider the function f(theta)=int(0)^(1)(|sqrt(1-x^(2))-sintheta|)/(s...

    Text Solution

    |

  19. f:[0,1)toR be a non increasing function the for alpha epsilon(0,1)

    Text Solution

    |

  20. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |