Home
Class 12
MATHS
Evaluating integrals dependent on a para...

Evaluating integrals dependent on a parameter:
Differentiate I with respect to the parameter with in the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I.
The value of `int_(0)^(1)(x^(a)-1)/(logx)dx` is

A

`log(a-1)`

B

`log(a+1)`

C

`alog(a+1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I(a)=int_(0)^(1)(x^(a)-1)/(logx)dx`……………..1
Differentiating w.r.t `a` keeping `x` is constant, we get
`(dI(a))/(da)=int_(0)^(1)((x^(a)-1)/(logx))dx`
`=int_(0)^(1)(x^(a)logx)/(logx)dx`
`=int_(0)^(1)x^(a)dx`
`=(x^(a+1))/(a+1)|_(0)^(1)=1/((a+1))`
Integrating both sides w.r.t `a` we get
`I(a)=log(a+1)+c`
For `a=0,1(0)=log1+c` [from equation 1]
`0=0+c`
`:. I=log(a+1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value int_(0)^(pi//2)log(sin^(2)theta+k^(2)cos^(2)theta)d theta , where kge0, is

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value of (dI)/(da) when I=int_(0)^(pi//2) log((1+asinx)/(1-asinx)) (dx)/(sinx) (where |a|lt1 ) is

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1)) , then the value of (dx)/((sqrt(10)-cosx)) is

Integrate with respect to x: i) x ln x

Some important formulas of integration

The integral of the product of a constant and a function = the constant x integral of function

Integrate with respect to x: i) sin^(2)x ,

Integrate with respect to x: ltbr i) 1/(2+cosx)

Use of Differentiation|Integration

Integration of some particular functions

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR the value of f'(1//2) is...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following ...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Data could not be retrieved.

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |