Home
Class 12
MATHS
Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int...

Let `u=int_0^oo (dx)/(x^4+7x^2+1` and `v=int_0^x (x^2dx)/(x^4+7x^2+1)` then

A

`pi//3`

B

`pi//6`

C

`pi//12`

D

`pi//9`

Text Solution

Verified by Experts

The correct Answer is:
B

`u=int_(0)^(oo) (dx)/(x^(4)+7x^(2)+1)` and `v=int_(0)^(oo) (x^(2)dx)/(x^(4)+7x^(2)+1)`
`:. u+v=int_(0)^(oo) (1+x^(2))/(x^(4)+7x^(2)+1)dx`
`=int_(0)^(oo) (1/(x^(2))+1)/((x-1/x)^(2)+9)dx`
`=1/3["tan"^(-1)((x-1/x)/3)]_(0)^(oo)`
`=1/3[pi//2+pi//2]=pi//3`
`:.u+v=pi//3`
Now `u-v=int_(0)^(oo) (1-x^(2))/(x^(4)+7x^(2)+1)dx`
Let `x=1/t` or `x=-(dt)/(t^(2))`
`:.u-v=int_(oo)^(0)(1-1/(t^(2)))/(1/(t^(4))+7/(t^(2))+1)(1-1/(t^(2)))dt`
`=-int_(0)^(oo)(1-t^(2))/(t^(4)+7t^(2)+1) dt`
`=-(u-v)`
`:. u-v=0`
From 1 and 2, we get `u=v=pi//6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^1 (x+x^2)dx

int_0^oo ((x^2+1)dx)/(x^4-x^2+1)

Let u=int_(0)^(oo)(dx)/(x^(4)+7x^(2)+1) and v=int_(0)^(x)(x^(2)dx)/(x^(4)+7x^(2)+1) then

int_0^oo (dx)/((x^2+4)(x^2+9)

Let I_1=int_0^1 (dx)/(1+x^(1/3)) and I_2=int_0^1 (dx)/(1+x^(1/4)) then 4I_1+3I_2=

int_0^4(x^2)/(x+1)dx=?

int_0^1(x^2-2)/(x^2+1)dx=?

int_(0)^(oo)(x)/(1+x^(4))dx=

If P=int_0^oo(x^2)/(1+x^4)dx ; Q=int_0^oo(x dx)/(1+x^4)"and"R=int_0^oo(dx)/(1+x^4), then prove that :

int (x^7)/(1+x^4)^2dx=

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR the value of f'(1//2) is...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following ...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Data could not be retrieved.

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |