Home
Class 12
MATHS
If Un=int0^pi(1-cosnx)/(1-cosx)dx , wher...

If `U_n=int_0^pi(1-cosnx)/(1-cosx)dx ,` where `n` is positive integer or zero, then show that `U_(n+2)+U_n=2U_(n+1)dot` Hence, deduce that `int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot`

A

`pi//2`

B

`pi`

C

`npi//2`

D

`npi`

Text Solution

Verified by Experts

The correct Answer is:
C

`U_(n+2)-U_(n+1)=int_(0)^(pi)((1-cos(n+2)x)-(1-cos(n+1)x))/(1-cosx)dx`
`=int_(0)^(pi)(cos(n+1)x-cos(n+2)x)/(1-cosx)`
`=int_(0)^(x)(2sin(n+3/2)x . "sin"x/2)/(2sin^(2)x//2) dx`
`implies U_(n+2)-U_(n+1)=int_(0)^(pi)("sin"(n+3/2)x)/("sin"x/2)dx`.................1
`impliesU_(n+1)-U_(n)=int_(0)^(pi)("sin"(n+1/2)x)/("sin"x/2)dx`.............2
From 1 and 2 we get
`(U_(n+2)-U_(n-1))-(U_(n+1)-U_(n))`
`=int_(0)^(pi)(sin(n+3/2)x-sin(n+1/2)x)/("sin"x/2)dx`
`implies U_(n+2)+U_(n)-2U_(n+1)`
`=int(2cos(n+1)x.sinx//2)/(sinx//2) dx`
`=2int_(0)^(pi)cos(n+1)x dx`
`=2((sin(n+1)x)/(n+1))-(0)^(pi)=0`
`impliesU_(n+2)+U_(n)=2U_(n+1)`
`implies U_(n),U_(n+1),U_(n+2)` are in A.P.
`U_(0)=int_(0)^(pi)(1-1)/(1-cosx)dx=0`
`U_(1)=int_(0)^(pi)(1-cosx)/(1-cosx) dx=pi`
`U_(1)=U_(0)=pi` (common difference)
`:.U_(n)=U_(0)+npi=npi`
Now, `I_(n)=int_(0)^(pi//2) (sin^(2) n theta)/(sin^(2) theta) d theta`
`=int_(0)^(pi//2) (sin^(2) n theta)/(sin^(2)theta) d theta`
`=int_(0)^(pi//2) (1-cos2 n theta)/(1-cos 2theta) d theta=1/2 int_(0)^(pi)(1-cosn x)/(1-cosx) dx`
`impliesI_(n)=1/2npi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If U_(n)=int_(0)^( pi)(1-cos nx)/(1-cos x)dx, where n is positive integer or zero,then show that U_(n+2)+U_(n)=2U_(n+1). Hence,deduce that int_(0)^((pi)/(2))(sin^(2)n theta)/(sin^(2)theta)=(1)/(2)n pi

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Show that int_(0)^(n pi+v)|sin x|dx=2n+1-cos v, where n is a positive integer and ,0<=v

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

The value of I(n)=int_(0)^( pi)(sin^(2)n theta)/(sin^(2)theta)d theta is (AA n in N)

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.

If n is a positive integer, prove that: int_0^(2pi) (cos(n-1)x-cosnx)/(1-cosx)dx=2pi , hence or otherwise, show that int_0^(2pi) (sin((nx)/2)/sin(x/2))^2dx=2npi .

If n is a positive integer and u_(n)=int x^(n)sqrt(a^(2)-x^(2))dx

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR the value of f'(1//2) is...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following ...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Data could not be retrieved.

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |