Home
Class 12
MATHS
Let the definite integral be defined by ...

Let the definite integral be defined by the formula `int_(a)^(b)f(x)dx=(b-a)/2(f(a)+f(b))`. For more accurate result, for `c epsilon (a,b), ` we can use `int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx=F(c)` so that for `c=(a+b)/2` we get `int_(a)^(b)f(x)dx=(b-a)/4(f(a)+f(b)+2f(c))`.
If `f''(x)lt0 AA x epsilon (a,b)` and `c` is `a` point such that `altcltb`, and `(c,f(c))` is the point lying on the curve for which `F(c)` is maximum then `f'(c)` is equal to

A

`(f(b)-f(a))/(b-a)`

B

`(2(f(b)-f(a)))/(b-a)`

C

`(2f(b)-f(a))/(2b-a)`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
B

`f''(x)lt0AAxepsilon(a,b)`, for `cepsilon(a,b)`
`F(c)=(c-a)/2(f(a))+(f(c))+(b-c)/2(f(b)+f(c))`
`=(b-a)/2f(c)+(c-a)/2f(a)+(b-c)/2f(b)`
or `F'(c)=(b-a)/2f'(c)+1/2f(a)-1/2f(b)`
`=1/2[(b-a)f'(c)+f(a)-f(b)]`
`F''(c)=1/2(b-a)f''(c)lt0`
`[ :' f''(x)lt0Ax epsilon(a,b)` and `bgta`]
Therefore `F(c)` is maximum at the point `(c,f(c))` where
`F'(c)=0` or `f'(c)=2 ((f(b)-f(a))/(b-a))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Property 3:int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

int_(a + c)^(b+c) f(x)dx=

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If f(a+b-x)=f(x) , then int_(a)^(b)x f(x)dx=

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR the value of f'(1//2) is...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following ...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Data could not be retrieved.

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |