Home
Class 12
MATHS
Prove that the product of the lengths of...

Prove that the product of the lengths of the perpendiculars drawn from the points `(sqrt(a^2-b^2),0)`and `(-sqrt(a^2-b^2),0)`to the line `x/a``costheta``+``y/b``sintheta=1`is `b^2`.

Text Solution

Verified by Experts

The equation of the given line is
`(x)/(a)"cos" theta + (y)/(b) "sin" theta = 1`
`" or " bx "cos" theta + ay " sin " theta-ab = 0" " (1)`
`" The length of the perpendicular from the point" (sqrt(a^(2)-b^(2)),0) "to line" (1) " is "`
`p_(1) = (|b "cos" theta sqrt(a^(2)-b^(2)) + a "sin" theta (0)-ab|)/(sqrt(b^(2) "cos"^(2) theta +a^(2) "sin"^(2) theta))`
`=(|b "cos" theta sqrt(a^(2) -b^(2))-ab|)/(sqrt(b^(2) cos^(2) theta +a ^(2) "sin"^(2) theta)) " " (2)`
`"The length of the perpendicular from the point" (-sqrt(a^(2)-b^(2)),0) " to line (I) is "`
`p_(2) = (|b "cos" theta (-sqrt(a^(2)-b^(2))) + a "sin" theta (0)-ab|)/(sqrt(b^(2) "cos"^(2) theta +a^(2) "sin"^(2) theta))`
`= (|b"cos" theta sqrt(a^(2)-b^(2)) +ab|)/(sqrt(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)) " " (3)`
`therefore p_(1) p_(2) = (|b"cos" theta sqrt(a^(2)-b^(2)) -ab||b "cos" theta sqrt(a^(2)-b^(2)) +ab|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(|b^(2)"cos"^(2) theta (a^(2)-b^(2)) -a^(2)b^(2)|)/((b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta))`
`=(|a^(2)b^(2)"cos"^(2) theta-b^(4) "cos"^(2)theta-a^(2)b^(2)|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(b^(2)|a^(2)"cos"^(2) theta-b^(2) "cos"^(2)theta-a^(2)|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(b^(2)|-b^(2)"cos"^(2) theta-a^(2)(1- "cos"^(2)theta)|)/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta)`
`=(b^(2)(b^(2)"cos"^(2) theta + a^(2)"sin"^(2)theta))/(b^(2) "cos"^(2) theta + a^(2) "sin"^(2) theta) =b^(2)`
Hence, proved.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE|Exercise Exercise 2.1|23 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise Exercise 2.2|4 Videos
  • STRAIGHT LINE

    CENGAGE|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|9 Videos

Similar Questions

Explore conceptually related problems

Prove that the product of the length of the perpendiculars from the points (sqrt(a^2 -b^2) , 0) and (-sqrt(a^2 -b^2), 0) to the line x/a cos theta + y/a cos theta + y/b sin theta = 1 is

23, Prove that the product of the lengths of the perpendiculars drawn from thepoints (a?-B,0) and (-Va -B,0) to the line cos 0 sin 6 =lis B.

The product of the length of the perpendiculars drawn from the point (1,1) to the pair of lines x^(2)+xy-6y^(2)=0

Show that the product of the perpendiculars from the points (+-sqrt(a^(2)-b^(2)),0) to the line (x)/(a)cos theta+(y)/(b)sun theta=1 is equal to b^(2)

The product of the perpendiculars drawn from (2,-1) to the pair of lines x^(2)-3xy+2y^(2)=0 is

The product of the perpendiculars drawn from the point (1,2) to the pair of lines x^(2)+4xy+y^(2)=0 is

What is the product of the perpendiculars from the two points (pm sqrt(b^(2)-a^(2)), 0) to the line ax cos phi + by sin phi =ab ?