Home
Class 12
MATHS
If p and p' are the distances of the ori...

If p and p' are the distances of the origin from the lines `x "sec" alpha + y " cosec" alpha = k " and " x "cos" alpha-y " sin" alpha = k`
`"cos" 2alpha, " then prove that 4p^(2) + p'^(2) = k^(2).`

Text Solution

Verified by Experts

`"Here," P = |(-k)/(sqrt("sec"^(2)alpha + "cosec"^(2)alpha))|, p' = |(-k"cos" 2alpha)/(sqrt("cos"^(2)alpha + "sin"^(2)alpha))|`
`"Here," 4p^(2) + p'^(2) = (4k^(2))/("sec"^(2)alpha + "cosec"^(2)alpha), + (k^(2)("cos"^(2)alpha- "sin"^(2)alpha)^(2))/(1)`
`= 4k^(2)"sec"^(2)"cos"^(2)alpha + k^(2)("cos"^(4)alpha+"sin"^(4)alpha)-2k^(2)"cos"^(2)alpha xx "sin"^(2)alpha`
`=k^(2)("sin"^(2)alpha+"cos"^(2)alpha)^(2) = k^(2)`
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE|Exercise Exercise 2.4|8 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise Exercise 2.5|8 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise Exercise 2.2|4 Videos
  • STRAIGHT LINE

    CENGAGE|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|9 Videos

Similar Questions

Explore conceptually related problems

Eliminate theta from the following equations: x sin alpha + ycosalpha = p and x cos alpha-y sin alpha = q

If P_(1) and p_(2) are the lenghts of the perpendiculars drawn from the origin to the two lines x sec alpha +y . Cosec alpha =2a and x. cos alpha +y. sin alpha =a. cos 2 alpha , show that P_(1)^(2)+P_(2)^(2) is constant for all values of alpha .

If p&q are lengths of perpendicular from the origin x sin alpha+y cos alpha=a sin alpha cos alpha and x cos alpha-y sin alpha=a cos2 alpha, then 4p^(2)+q^(2)

Locus of the point of intersection of lines x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=a(alpha in R) is

If p sin^(3)alpha+qcos^(3)alpha=sinalphacosalpha and p sinalpha - q cos alpha=0, then prove that : p^(2)+q^(2)=1

Locus of the point of intersection of the lines x cos alpha+y sin alpha=a and x sin alpha-y cos alpha=b where alpha is variable.

The locus of the point of intersection of the lines x cosalpha + y sin alpha= p and x sinalpha-y cos alpha= q , alpha is a variable will be

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .