Home
Class 11
MATHS
f(x)=|(2x^3,-x^2,3x),(12,x-2,0),(6x^2,-2...

`f(x)=|(2x^3,-x^2,3x),(12,x-2,0),(6x^2,-2x,3)| f''(x=0)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |(x,x^2,x^3),(1,2x,3x^2),(0,2,6x)| , then f^(1)(x)=

If f(X)= |(x,x^(2),x^(3)),(1,2x,3x^(2)),(0,2,6x)| then f '(x) is equal to

If f(x)= [[x,x^2,x^3],[1,2x,3x^2],[0,2,6x]] find f'(x)

If F(x)=|[x,x^2,x^3],[1,2x,3x^2],[0,2,6x]| , then F'(x) is

If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R and f''(x) gt 0 AA x in R then g(x) is increasing in the interval

If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R and f''(x) gt 0 AA x in R then g(x) is increasing in the interval

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

f(x)=2x^(2)-3x+2in[0,2]

Let f(x) be a function defined as f(x)= {(sin(x^2-3x),xle0),(6x+5x^2,xgt0):} Then at x=0,f(x)