Home
Class 12
MATHS
Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(...

Solve : `(i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given inequalities step by step, we will break down each part of the question. ### Part (i): Solve the inequality \[ \frac{(x-1)(x-2)(x-3)}{(x+1)(x+2)(x+3)} < 0 \] **Step 1: Identify the domain of the function** - The function is undefined when the denominator is zero. Therefore, we need to find the values of \(x\) that make the denominator zero: - \(x + 1 = 0 \Rightarrow x = -1\) - \(x + 2 = 0 \Rightarrow x = -2\) - \(x + 3 = 0 \Rightarrow x = -3\) Thus, the function is undefined at \(x = -1, -2, -3\). **Hint:** Check where the denominator equals zero to find points of discontinuity. **Step 2: Find the critical points** - The critical points from the numerator are: - \(x - 1 = 0 \Rightarrow x = 1\) - \(x - 2 = 0 \Rightarrow x = 2\) - \(x - 3 = 0 \Rightarrow x = 3\) So, the critical points are \(x = -3, -2, -1, 1, 2, 3\). **Hint:** Identify both the zeros of the numerator and the denominator. **Step 3: Create a number line and test intervals** - The critical points divide the number line into intervals: - \((- \infty, -3)\) - \((-3, -2)\) - \((-2, -1)\) - \((-1, 1)\) - \((1, 2)\) - \((2, 3)\) - \((3, \infty)\) **Step 4: Test each interval** - Choose test points from each interval to determine the sign of the expression: - For \(x < -3\) (e.g., \(x = -4\)): \(\frac{(-)(-)(-)}{(-)(-)(-)} = -\) (negative) - For \((-3, -2)\) (e.g., \(x = -2.5\)): \(\frac{(-)(-)(-)}{(+)(-)(-)} = +\) (positive) - For \((-2, -1)\) (e.g., \(x = -1.5\)): \(\frac{(-)(-)(-)}{(+)(+)(-)} = -\) (negative) - For \((-1, 1)\) (e.g., \(x = 0\)): \(\frac{(-)(-)(-)}{(+)(+)(+)} = -\) (negative) - For \((1, 2)\) (e.g., \(x = 1.5\)): \(\frac{(+)(-)(-)}{(+)(+)(+)} = +\) (positive) - For \((2, 3)\) (e.g., \(x = 2.5\)): \(\frac{(+)(+)(-)}{(+)(+)(+)} = -\) (negative) - For \(x > 3\) (e.g., \(x = 4\)): \(\frac{(+)(+)(+)}{(+)(+)(+)} = +\) (positive) **Step 5: Determine where the expression is negative** - The intervals where the expression is negative are: - \((- \infty, -3)\) - \((-2, -1)\) - \((-1, 1)\) - \((2, 3)\) **Step 6: Write the final solution** - The solution to the inequality is: \[ x \in (-\infty, -3) \cup (-2, -1) \cup (-1, 1) \cup (2, 3) \] ### Part (ii): Solve the inequality \[ \frac{x^4 + x^2 + 1}{x^2 + 4x - 5} < 0 \] **Step 1: Analyze the numerator** - The numerator \(x^4 + x^2 + 1\) is always positive because: - \(x^4\) is non-negative for all \(x\) - \(x^2\) is non-negative for all \(x\) - The constant \(1\) is positive. **Hint:** Check the behavior of the numerator to determine if it can be negative. **Step 2: Analyze the denominator** - Set the denominator equal to zero to find critical points: \[ x^2 + 4x - 5 = 0 \] Factoring gives: \[ (x + 5)(x - 1) = 0 \Rightarrow x = -5, 1 \] **Step 3: Determine the domain** - The function is undefined at \(x = -5\) and \(x = 1\). Thus, the domain is: \[ x \in (-\infty, -5) \cup (-5, 1) \cup (1, \infty) \] **Step 4: Test the intervals** - The critical points divide the number line into intervals: - \((- \infty, -5)\) - \((-5, 1)\) - \((1, \infty)\) - Choose test points: - For \(x < -5\) (e.g., \(x = -6\)): \(\text{positive} / \text{negative} = -\) (negative) - For \((-5, 1)\) (e.g., \(x = 0\)): \(\text{positive} / \text{positive} = +\) (positive) - For \(x > 1\) (e.g., \(x = 2\)): \(\text{positive} / \text{positive} = +\) (positive) **Step 5: Determine where the expression is negative** - The only interval where the expression is negative is: \((- \infty, -5)\) **Step 6: Write the final solution** - The solution to the inequality is: \[ x \in (-\infty, -5) \] ### Summary of Solutions 1. For Part (i): \[ x \in (-\infty, -3) \cup (-2, -1) \cup (-1, 1) \cup (2, 3) \] 2. For Part (ii): \[ x \in (-\infty, -5) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos

Similar Questions

Explore conceptually related problems

Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-1)gt0.

Solve for x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3);x!=2,4

Solve for :x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3),x!=2,4

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

Solve x(x+2)^(2)(x-1)^(5)(2x-3)(x-3)^(4)>=0

Solve for x:(x-1)/(x+2)+(x-3)/(x-4)=(10)/(3),x!=-2,4

Solve : (|x-1|-3)(|x+2)-5) lt 0 .

Solve for x : (1)/((x-1)(x-2))+(1)/((x-2)(x-3))+(1)/((x-3)(x-4))=(1)/(6)

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve :(x+(1)/(x))^(2)-(3)/(2)(x-(1)/(x))=4 when x!=0

RESONANCE-DPP-QUESTION
  1. Find number of integral solutionlog(x+3)(x^(2)-x)lt1

    Text Solution

    |

  2. Suppose xy-5x+2y=30, where x and y are positive integers. Find the num...

    Text Solution

    |

  3. Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x...

    Text Solution

    |

  4. If alpha,beta be the roots of the equation (x-a)(x-b)+c=0(c!=0), then ...

    Text Solution

    |

  5. If sum(r=0)^(n-1)log(2)((r+2)/(r+1)) prod(r=10)^(99)log(r) (r+1), then...

    Text Solution

    |

  6. Solve for x: log(2)x le 2/(log(2)x-1)

    Text Solution

    |

  7. Solve the in equality log(1/4) (2-x)>log(1/4) (2/(x+1)).

    Text Solution

    |

  8. Given that log(a^(2))(a^(2)+1)=16 find the value of log(a^(32))"("a+1/...

    Text Solution

    |

  9. If (3log(10)x+19)/(3log(10)x-1)=2 log(10)x+1, find solution of equatio...

    Text Solution

    |

  10. Prove that there exist no natural numbers, m and n such that m^(2)=n^(...

    Text Solution

    |

  11. Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-...

    Text Solution

    |

  12. If (u)/(alpha)=(v)/(beta)=then (u)/(alpha)=(v)/(beta)=((au^(n)+bv^(n))...

    Text Solution

    |

  13. If ratio of the work done by n men in (n+2) days is to the work done b...

    Text Solution

    |

  14. Number of non-negative integral values of 'k' for which roots of the e...

    Text Solution

    |

  15. Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

    Text Solution

    |

  16. If x-=2+2^(2//3)+2^(1//3)" then the value "(x^(3)-6x^(2)+6x) is

    Text Solution

    |

  17. If log 15=a and log75=b, then log(75)45 is:

    Text Solution

    |

  18. If log(10)(x-1)^3-3log(10)(x-3)=log(10)8,then log(x)625 has the value ...

    Text Solution

    |

  19. Find all positive intogers x,y aatisfying (1)/(sqrtx)+(1)/(sqrty)=(1)/...

    Text Solution

    |

  20. Given that N=7^(log(49)900),A=2^(log(2)4)+3^(log(2)4)+4^(log(2)2)-4^(...

    Text Solution

    |