Home
Class 12
MATHS
Find the root common the system of equat...

Find the root common the system of equations `log_(10)(3^(x)-2^(4-x))=2+1/4log_(10)16-x/2 log_(10)4`
`and log_(3) (3x^(2-13x+58)+(2)/(9))=log_(5)(0.2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations: 1. **Equation 1**: \[ \log_{10}(3^x - 2^{4-x}) = 2 + \frac{1}{4} \log_{10}(16) - \frac{x}{2} \log_{10}(4) \] 2. **Equation 2**: \[ \log_{3}(3x^2 - 13x + 58 + \frac{2}{9}) = \log_{5}(0.2) \] ### Step-by-Step Solution: #### Step 1: Simplify Equation 1 Start with the first equation: \[ \log_{10}(3^x - 2^{4-x}) = 2 + \frac{1}{4} \log_{10}(16) - \frac{x}{2} \log_{10}(4) \] We know that: \[ \log_{10}(16) = \log_{10}(2^4) = 4 \log_{10}(2) \] \[ \log_{10}(4) = \log_{10}(2^2) = 2 \log_{10}(2) \] Substituting these values into the equation, we get: \[ \log_{10}(3^x - 2^{4-x}) = 2 + \frac{1}{4}(4 \log_{10}(2)) - \frac{x}{2}(2 \log_{10}(2)) \] \[ = 2 + \log_{10}(2) - x \log_{10}(2) \] Now, rewriting the right side: \[ = \log_{10}(100) + \log_{10}(2) - x \log_{10}(2) = \log_{10}(100 \cdot 2) - x \log_{10}(2) \] \[ = \log_{10}(200) - x \log_{10}(2) \] Thus, we have: \[ \log_{10}(3^x - 2^{4-x}) = \log_{10}\left(\frac{200}{2^x}\right) \] #### Step 2: Remove the Logarithm Equating the arguments gives: \[ 3^x - 2^{4-x} = \frac{200}{2^x} \] Multiplying both sides by \(2^x\): \[ 2^x(3^x - 2^{4-x}) = 200 \] \[ 2^x \cdot 3^x - 16 = 200 \] \[ 2^x \cdot 3^x = 216 \] #### Step 3: Express in Terms of Base Recognizing \(216 = 6^3\): \[ (2 \cdot 3)^x = 6^3 \] Thus: \[ x = 3 \] #### Step 4: Verify in Equation 2 Now, substitute \(x = 3\) into the second equation: \[ \log_{3}(3(3^2) - 13(3) + 58 + \frac{2}{9}) = \log_{5}(0.2) \] Calculating the left side: \[ = \log_{3}(27 - 39 + 58 + \frac{2}{9}) = \log_{3}(46 + \frac{2}{9}) = \log_{3}\left(\frac{416}{9}\right) \] Calculating the right side: \[ \log_{5}(0.2) = \log_{5}\left(\frac{1}{5}\right) = -1 \] Since both sides do not equal, we need to check if \(x = 3\) satisfies the second equation. ### Final Answer The common root for the system of equations is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos

Similar Questions

Explore conceptually related problems

Find the real solution to the system of equation log_(10)(2000xy)-log_(10)x*log_(10)y=4,log_(10)(2yz)-log_(10)y*log_(10)z=1 and log_(10)(2x)-log_(10)x*log_(10)x=

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4log_(10)(2yz)-log_(10)y log_(10)z=1 and log_(10)zx-log_(10)z log_(10)x=0

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

Find the value of x given that 2log_(10)(2^(x)-1)=log_(10)2+log_(10)(2^(x)+3)

The solution set of the equation log_(10)(3x^(2)+12x+19)log_(10)(3x+4)=1 is

solve for x log_(2)(9-2^(x))=10^(log_(10)(3-x))

The sum of solution of the equation log_(10)(3x^(2) +12x +19) - log_(10)(3x +4) = 1 is

Find the square of the sum of the roots of the equation log_(3)x*log_(4)x*log_(5)x=log_(3)x*log_(4)x+log_(5)x*log_(3)x

(iv) Find the product of roots of the equation (log_(3)x)^(2)-2(log_(3)x)-5=0

Number of solutions of equation log_(2)(9-2)^(x)=10^(log10(3-x)) , is

RESONANCE-DPP-QUESTION
  1. Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo)...

    Text Solution

    |

  2. If alpha,beta, gamma are the roots of the cubic 2009x^(3)+2x^(3)+1=0. ...

    Text Solution

    |

  3. Find the root common the system of equations log(10)(3^(x)-2^(4-x))=2+...

    Text Solution

    |

  4. Consider the number N= 123X43Y where x & y are digits 0leXle9and0leYl...

    Text Solution

    |

  5. Consider the equations (3x)^(log3)=(4y)^(log4)and 4^(logx)=3^(logy) ...

    Text Solution

    |

  6. Consider the equations (3x)^(log3)=(4y)^(log4)and 4^(logx)=3^(logy) ...

    Text Solution

    |

  7. If the difference of the roots of the question ,x^(2)+px+q=0"be unity,...

    Text Solution

    |

  8. If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, the...

    Text Solution

    |

  9. If alpha is a roots equations 4x^2+2x-1=0andf(x)=4x^3-3x+1,then2(f(alp...

    Text Solution

    |

  10. Find the sum of all integers satisfying the inequalities log(5)(x-3)+...

    Text Solution

    |

  11. If x(1),x(2)and x(3) are the three real solutions of the equations x^...

    Text Solution

    |

  12. Let a and b be two integers such that 10 a + b = 20 and g(x) = x^2 + a...

    Text Solution

    |

  13. The value of x satisfying the equation (5050-((1)/(2)+(2)/(3)+(3)/(4)+...

    Text Solution

    |

  14. Find the value of k for which the following set of quadratic equations...

    Text Solution

    |

  15. The multiplication of a rational number 'x' and an irrational numbe...

    Text Solution

    |

  16. Consider a 7-digit number N=ABCDE15. If N is dividible by 11 then the ...

    Text Solution

    |

  17. Let U be set with number of element in U is 2009. Consider the followi...

    Text Solution

    |

  18. Let U be the universal set and AuuBuuC=uu then {(A-B)uu(B-C)uu(C-A)}' ...

    Text Solution

    |

  19. Let U={xcN,xle10},A={x inN,1lex^(3)lt150}and B={x inN, x is prime numb...

    Text Solution

    |

  20. 31 candidates appeared for an examination, 15 candidates passed in Mat...

    Text Solution

    |