Home
Class 12
MATHS
Simply |{:(,a,b,c),(,a^(2),b^(2),c^(2)),...

Simply `|{:(,a,b,c),(,a^(2),b^(2),c^(2)),(,bc,ca,ab):}|`

Text Solution

Verified by Experts

Given determinant is equal to
`=(1)/(abc)|{:(,a^(2),b^(2),c^(2)),(,a^(3),b^(3),c^(3)),(,abc,abc,abc):}|=|{:(,a^(2),b^(2),c^(2)),(,a^(3),b^(3),c^(3)),(,1,1,1):}|`
Apply `C_(1)toC_(1)-C_(2), C_(2)toC_(2)-C_(3)`
`|{:(,a^(2)-b^(2),b^(2)-c^(2),c^(2)),(,a^(3)-b^(3),b^(3)-c^(3),c^(3)),(,0,0,1):}|`
`(a-b)(b-c) [ab^(2)+abc+ac^(2)+b^(3)+b^(2)C+bc^(2)-a^(2)b=a^(2)c-ab^(2)-abc-b^(3)-b^(2)c`
`=(a-b)(b-c)[c(ab+bc+ca)-a(ab+bc+ca)]`
`=(a-b)(b-c)(c-a)(ab+bc+ca)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-1|7 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

Simplify: (a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

Show that |{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}| |{:(a^(2),,c^(2),,2ca-b^(2)),(2ab-c^(2),,b^(2),,a^(2)),(b^(2),,2ac-a^(2),,c^(2)):}|.

The value of det[[a,b,ca^(2),b^(2),c^(2)bc,ca,ab]] equal to

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2),ab,ca),(ab,c^(2)+a^(2),bc),(ca,bc,a^(2)+b^(2)):}|=4a^(2)b^(2)c^(2)

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

RESONANCE-MATRICES & DETERMINANT-HLP
  1. Simply |{:(,a,b,c),(,a^(2),b^(2),c^(2)),(,bc,ca,ab):}|

    Text Solution

    |

  2. If a^2+b^2+c^2=1, then prove that |a^2+(b^2+c^2)cosvarphia b(1-cosv...

    Text Solution

    |

  3. prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),...

    Text Solution

    |

  4. Prove that Delta=|{:(,beta(gamma),beta(gamma)'+beta'(gamma),beta'(gamm...

    Text Solution

    |

  5. If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a...

    Text Solution

    |

  6. if (x(1),x(2))^(2)+(y(1)-y(2))^(2)=a^(2), (x(2)-x(3))^(2)+(y(2)-y(3))^...

    Text Solution

    |

  7. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  8. If y=(u)/(v), where u and v are functions of x, show that v^(3)(d^(2...

    Text Solution

    |

  9. If alpha&beta be the real roots of ax^(2)+bx+c=0 and s(n)=alpha^(n)+be...

    Text Solution

    |

  10. let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d))...

    Text Solution

    |

  11. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  12. If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3)...

    Text Solution

    |

  13. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  14. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  15. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  16. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  17. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  18. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  19. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  20. Let 'A' is (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  21. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |