Home
Class 12
MATHS
Obtain the inverse of the matrix A=[{:(2...

Obtain the inverse of the matrix `A=[{:(2,3),(1,1):}]` using elementary operations.

Text Solution

AI Generated Solution

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \) using elementary operations, we will augment the matrix \( A \) with the identity matrix and perform row operations to transform \( A \) into the identity matrix. The steps are as follows: ### Step 1: Set up the augmented matrix We start with the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 2 & 3 & | & 1 & 0 \\ 1 & 1 & | & 0 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-1|7 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using elementary column transformations .

find the inverse of matrix A=[{:(4,7),(3,5):}] by using elementary column transformation .

Obtain the inverse of the following matrix, using elementary operations: [[3,0,-12,3,00,4,1]]

The inverse of the matrix ([2,1],[1,3]) is

Obtain the inverse of the following matrix using elementary operations A=[0 1 2 1 2 3 3 1 1] .

Obtain the inverse of the following matrix using elementary operations A=[[3,-1,1],[-15,6,-5],[5,-2,2]]

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

Find the inverse of the matrix A=[[1,2,3],[2,4,5],[3,5,6]] by using elementary raw transformations

Find the inverse of the following matrix using elementary operations: 1,2,-2-1,3,00,-2,1]]

RESONANCE-MATRICES & DETERMINANT-HLP
  1. Obtain the inverse of the matrix A=[{:(2,3),(1,1):}] using elementary ...

    Text Solution

    |

  2. If a^2+b^2+c^2=1, then prove that |a^2+(b^2+c^2)cosvarphia b(1-cosv...

    Text Solution

    |

  3. prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),...

    Text Solution

    |

  4. Prove that Delta=|{:(,beta(gamma),beta(gamma)'+beta'(gamma),beta'(gamm...

    Text Solution

    |

  5. If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a...

    Text Solution

    |

  6. if (x(1),x(2))^(2)+(y(1)-y(2))^(2)=a^(2), (x(2)-x(3))^(2)+(y(2)-y(3))^...

    Text Solution

    |

  7. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  8. If y=(u)/(v), where u and v are functions of x, show that v^(3)(d^(2...

    Text Solution

    |

  9. If alpha&beta be the real roots of ax^(2)+bx+c=0 and s(n)=alpha^(n)+be...

    Text Solution

    |

  10. let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d))...

    Text Solution

    |

  11. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  12. If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3)...

    Text Solution

    |

  13. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  14. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  15. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  16. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  17. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  18. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  19. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  20. Let 'A' is (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  21. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |