Home
Class 12
MATHS
If C=[{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{...

If C=`[{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{:(,0,2,3),(,-2,0,4),(,-3,-4,0):}] [{:(,1,7,9),(,4,2,8),(,6,5,3):}]` Then trace of `C+C^(3)+C^(5)+……+C^(99)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the trace of the matrix expression \( C + C^3 + C^5 + \ldots + C^{99} \), we will follow these steps: ### Step 1: Define the Matrix C The matrix \( C \) is given as: \[ C = \begin{pmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{pmatrix} \] ### Step 2: Calculate \( C^2 \) To find \( C^3 \), we first need to calculate \( C^2 \): \[ C^2 = C \cdot C = \begin{pmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{pmatrix} \] Calculating the elements of \( C^2 \): - First row, first column: \( 1 \cdot 1 + 4 \cdot 7 + 6 \cdot 9 = 1 + 28 + 54 = 83 \) - First row, second column: \( 1 \cdot 4 + 4 \cdot 2 + 6 \cdot 8 = 4 + 8 + 48 = 60 \) - First row, third column: \( 1 \cdot 6 + 4 \cdot 5 + 6 \cdot 3 = 6 + 20 + 18 = 44 \) - Second row, first column: \( 7 \cdot 1 + 2 \cdot 7 + 5 \cdot 9 = 7 + 14 + 45 = 66 \) - Second row, second column: \( 7 \cdot 4 + 2 \cdot 2 + 5 \cdot 8 = 28 + 4 + 40 = 72 \) - Second row, third column: \( 7 \cdot 6 + 2 \cdot 5 + 5 \cdot 3 = 42 + 10 + 15 = 67 \) - Third row, first column: \( 9 \cdot 1 + 8 \cdot 7 + 3 \cdot 9 = 9 + 56 + 27 = 92 \) - Third row, second column: \( 9 \cdot 4 + 8 \cdot 2 + 3 \cdot 8 = 36 + 16 + 24 = 76 \) - Third row, third column: \( 9 \cdot 6 + 8 \cdot 5 + 3 \cdot 3 = 54 + 40 + 9 = 103 \) Thus, \[ C^2 = \begin{pmatrix} 83 & 60 & 44 \\ 66 & 72 & 67 \\ 92 & 76 & 103 \end{pmatrix} \] ### Step 3: Calculate \( C^3 \) Next, we calculate \( C^3 = C^2 \cdot C \): \[ C^3 = \begin{pmatrix} 83 & 60 & 44 \\ 66 & 72 & 67 \\ 92 & 76 & 103 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{pmatrix} \] Calculating the elements of \( C^3 \): - First row, first column: \( 83 \cdot 1 + 60 \cdot 7 + 44 \cdot 9 = 83 + 420 + 396 = 899 \) - First row, second column: \( 83 \cdot 4 + 60 \cdot 2 + 44 \cdot 8 = 332 + 120 + 352 = 804 \) - First row, third column: \( 83 \cdot 6 + 60 \cdot 5 + 44 \cdot 3 = 498 + 300 + 132 = 930 \) - Second row, first column: \( 66 \cdot 1 + 72 \cdot 7 + 67 \cdot 9 = 66 + 504 + 603 = 1173 \) - Second row, second column: \( 66 \cdot 4 + 72 \cdot 2 + 67 \cdot 8 = 264 + 144 + 536 = 944 \) - Second row, third column: \( 66 \cdot 6 + 72 \cdot 5 + 67 \cdot 3 = 396 + 360 + 201 = 957 \) - Third row, first column: \( 92 \cdot 1 + 76 \cdot 7 + 103 \cdot 9 = 92 + 532 + 927 = 1551 \) - Third row, second column: \( 92 \cdot 4 + 76 \cdot 2 + 103 \cdot 8 = 368 + 152 + 824 = 1344 \) - Third row, third column: \( 92 \cdot 6 + 76 \cdot 5 + 103 \cdot 3 = 552 + 380 + 309 = 1241 \) Thus, \[ C^3 = \begin{pmatrix} 899 & 804 & 930 \\ 1173 & 944 & 957 \\ 1551 & 1344 & 1241 \end{pmatrix} \] ### Step 4: Calculate the Trace of \( C \) The trace of a matrix is the sum of its diagonal elements. For matrix \( C \): \[ \text{Trace}(C) = 1 + 2 + 3 = 6 \] ### Step 5: Calculate the Trace of \( C^3 \) For matrix \( C^3 \): \[ \text{Trace}(C^3) = 899 + 944 + 1241 = 3084 \] ### Step 6: Generalize for \( C^n \) Notice that if \( C \) is a matrix with a trace of 0, then all odd powers of \( C \) will also have a trace of 0. Thus: \[ \text{Trace}(C^1) = 6, \quad \text{Trace}(C^3) = 0, \quad \text{Trace}(C^5) = 0, \ldots, \text{Trace}(C^{99}) = 0 \] ### Step 7: Sum the Traces Now we can sum the traces: \[ \text{Trace}(C + C^3 + C^5 + \ldots + C^{99}) = \text{Trace}(C) + \text{Trace}(C^3) + \text{Trace}(C^5) + \ldots + \text{Trace}(C^{99}) = 6 + 0 + 0 + \ldots + 0 = 6 \] ### Final Answer Thus, the trace of \( C + C^3 + C^5 + \ldots + C^{99} \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-B|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-C|11 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Let A=[{:(0,1,-2),(5,-1,-4):}],B=[{:(1,-3,-1),(0,-2," "5):}]" and "C=[{:(2,-5,1),(-4," "0,6):}]. Compute 5A-3B+4C.

If A=[(3,9,0),(1,8,-2),(7,5,4)], B=[(4,0,2),(7,1,4),(2,2,6)] , verify that 3(A+B)=3A+3B .

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

If A=[(2,1,1),(3,-1,0),(0,2,4)], B=[(9,7,-1),(3,5,4),(2,1,6)] and C=[(2,-4,3),(1,-1,0),(9,4,5)]. Varify associative law for matrix addition.

If A = [{:(3, 2),(1, 4):}], B = [{:(-5, 9), (3, 4):}]," and C" = [{:(-3, 6),(2, 1):}], then find 2A + 3B - 4C.

Let A=[{:(1,-2),(5," "4),(3," "0):}],B=[{:(" "3," "1),(" "0," "2),(-3," "5):}]" and "C=[{:(" "4," "3),(-2," "2),(" "1," "6):}]. Verify that (A+B)+C=A+(B+C).

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

If the rank of the matrix A= [(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,alpha)] is 3 then a= (A) -5 (B) 5 (C) 4 (D) 4