Home
Class 12
MATHS
If a, b,c gt 0& x,y,z in R" then the det...

If `a, b,c gt 0& x,y,z in R" then the determinant"[{:(,(a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1),(,(b^(y)+b^(-y))^(2),(b^(y)-b^(-y))^(2),1),(,(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1):}]=`

A

`a^(x)b^(y)c^(z)`

B

`a^(-x)b^(-y)c^(-z)`

C

`a^(2x)b^(2y)c^(2z)`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we will follow a systematic approach. The determinant is given by: \[ D = \begin{vmatrix} (a^x + a^{-x})^2 & (a^x - a^{-x})^2 & 1 \\ (b^y + b^{-y})^2 & (b^y - b^{-y})^2 & 1 \\ (c^z + c^{-z})^2 & (c^z - c^{-z})^2 & 1 \end{vmatrix} \] ### Step 1: Expand the terms in the determinant First, we will expand the squares in the determinant. 1. For the first row: \[ (a^x + a^{-x})^2 = a^{2x} + 2 + a^{-2x} \] \[ (a^x - a^{-x})^2 = a^{2x} - 2 + a^{-2x} \] 2. For the second row: \[ (b^y + b^{-y})^2 = b^{2y} + 2 + b^{-2y} \] \[ (b^y - b^{-y})^2 = b^{2y} - 2 + b^{-2y} \] 3. For the third row: \[ (c^z + c^{-z})^2 = c^{2z} + 2 + c^{-2z} \] \[ (c^z - c^{-z})^2 = c^{2z} - 2 + c^{-2z} \] Thus, the determinant becomes: \[ D = \begin{vmatrix} a^{2x} + 2 + a^{-2x} & a^{2x} - 2 + a^{-2x} & 1 \\ b^{2y} + 2 + b^{-2y} & b^{2y} - 2 + b^{-2y} & 1 \\ c^{2z} + 2 + c^{-2z} & c^{2z} - 2 + c^{-2z} & 1 \end{vmatrix} \] ### Step 2: Simplify the determinant Next, we will simplify the determinant by subtracting the second column from the first column: \[ D = \begin{vmatrix} (a^{2x} + 2 + a^{-2x}) - (a^{2x} - 2 + a^{-2x}) & a^{2x} - 2 + a^{-2x} & 1 \\ (b^{2y} + 2 + b^{-2y}) - (b^{2y} - 2 + b^{-2y}) & b^{2y} - 2 + b^{-2y} & 1 \\ (c^{2z} + 2 + c^{-2z}) - (c^{2z} - 2 + c^{-2z}) & c^{2z} - 2 + c^{-2z} & 1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 4 & a^{2x} - 2 + a^{-2x} & 1 \\ 4 & b^{2y} - 2 + b^{-2y} & 1 \\ 4 & c^{2z} - 2 + c^{-2z} & 1 \end{vmatrix} \] ### Step 3: Factor out the common term Now, we can factor out the common term (4) from the first column: \[ D = 4 \begin{vmatrix} 1 & a^{2x} - 2 + a^{-2x} & 1 \\ 1 & b^{2y} - 2 + b^{-2y} & 1 \\ 1 & c^{2z} - 2 + c^{-2z} & 1 \end{vmatrix} \] ### Step 4: Evaluate the determinant Notice that the first column now has identical entries (all 1s). Therefore, the determinant evaluates to zero: \[ D = 4 \cdot 0 = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-C|11 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-1|7 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that the value of each the following determinants is zero: (a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1(b^(y)+b^(-y))^(2),(b^(y)-+b^(-y))^(2),1(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1]|

If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to

If a,b,c>0 and x,y,z in R then |[(a^x+a^(-x))^2, (a^x-a^(-x))^2, 1] , [(b^y+b^(-y))^2, (b^y-b^(-y))^2, 1], [(c^z+c^(-z))^2, (c^z-c^(-z))^2, 1]|=

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)

det[[1,x,x^(2)1,y,y^(2)1,z,z^(2)]]det[[a^(2),1,2ab^(2),1,2b1,z,z^(2)]]det[[a^(2),1,2ab^(2),1,2bc^(2),1,2c]]=det[[(a-x)^(2),(b-x^(2)),(c-x)^(2)(a-y)^(2),(b-y)^(2),(c-y)^(2)(a-z)^(2),(b-z)^(2),(c-z)^(2)]]

The value of the determinant ,log_(a)((x)/(y)),log_(a)((y)/(z)),log_(a)((z)/(x))log_(b)((y)/(z)),log_(b)((z)/(x)),log_(b)((x)/(y))log_(c)((z)/(x)),log_(c)((x)/(y)),log_(c)((y)/(z))]|

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

a(y+z)=x,b(z+x)=y,c(x+y)=z prove that (x^(2))/(a(1-bc))=(y^(2))/(b(1-ca))=(z^(2))/(c(1-ab))

RESONANCE-MATRICES & DETERMINANT-SECTION-B
  1. If minor of three-one element (i.e.M(31)) in the determinant [{:(,0,1,...

    Text Solution

    |

  2. Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36...

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-...

    Text Solution

    |

  4. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  5. Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. The value of |(a(1) x(1) + b(1) y(1),a(1) x(2) + b(1) y(2),a(1) x(3) +...

    Text Solution

    |

  8. If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find...

    Text Solution

    |

  9. If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then ...

    Text Solution

    |

  10. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  11. |[-1,2,1] , [3+2sqrt2,2+2sqrt2,1] , [3-2sqrt2,2-2sqrt2,1]|=

    Text Solution

    |

  12. If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then th...

    Text Solution

    |

  13. If a, b,c gt 0& x,y,z in R" then the determinant"[{:(,(a^(x)+a^(-x))^(...

    Text Solution

    |

  14. If a,b,c are non-zero real numbers then D=|[b^2 c^2, bc, b+c] , [c^2a^...

    Text Solution

    |

  15. The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...

    Text Solution

    |

  16. If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x...

    Text Solution

    |

  17. The value of the determinant |(cos(theta+phi),-sin(theta+phi),cos2phi)...

    Text Solution

    |

  18. Consider the set A of all determinants of order 3 with entries 0 or 1 ...

    Text Solution

    |